

Committente:

ENERGY AQUARIUS SRL

Via Arrigo Boito, 8 - 20121 Milano - Italy pec: energyaquarius@legalmail.it

Progetto definitivo:

PROVVEDIMENTO AUTORIZZATIVO UNICO REGIONALE ai sensi dell' art. 27 bis del D.Lgs. 152/06 e del D.M. 52/2015

Denominazione progetto:

IMPIANTO FOTOVOLTAICO "CARPI-Fossoli" di potenza 23,20 MWp con annesso SISTEMA DI ACCUMULO (BESS) di potenza 15 MWp

Sito in:

COMUNE DI CARPI (MO)

Titolo elaborato:

Relazione geologica

Elaborato: E-10 Scala -

 $\label{eq:condinamento} \textit{Responsabile Coordinamento progetto}: \quad \textit{dott. for. Edoardo Pio Iurato}$

Progettisti: dott. geol. Cristian Borra

Collaboratori: -

TIMBRI E FIRME:

REV.:	REDAZIONE:	CONTROLLO:	APPROVAZIONE :	DATA:
00	dott. geol. Cristian Borra	dott. geol. Cristian Borra	dott. geol. Cristian Borra	13/05/2024
01	dott. geol. Cristian Borra	dott. geol. Cristian Borra	dott. geol. Cristian Borra	15/07/2024
02				
03				
04				
05				

FIRMA/TIMBRO COMMITTENTE:

ENERGY AQUARIUS S.R.L.

Via Arrigo Boito, 8 20121 Milano (MI) P. IVA/C.F. 13512090963

ENERGY AQUARIUS SRL

Via Arrigo Boito, 8 - 20121 Milano - Italy pec: energyaquarius@legalmail.it

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 1 di 17			

PRE	AMBOLO	2
1.	Premessa	3
2.	CARATTERI GEOMORFOLOGICI, GEOLITOLOGICI, IDROGEOLOGICI E IDROLOGICI DELL'AREA INTERESSATA	
	DALL'INTERVENTO	4
3.	PARAMETRIZZAZIONE GEOTECNICA DEL SITO D'INTERVENTO	8
4.	CARATTERI SISMICI DELL'AREA D'INDAGINE	11
5.	CONSIDERAZIONI CONCLUSIVE	16

	IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 2 di 17				

Preambolo

La società **EnviCons S.r.I.** – sede legale lungo Po Antonelli n° 21, Torino, P.I. 10189620015, ha ricevuto incarico dalla società Lio Energy Development S.r.I. – in rappresentanza di Energy Aquarius S.r.I. – per la redazione di uno Studio geologico e geotecnico inerente alla realizzazione di un progetto di produzione energetica sostenibile, integrato con un sistema di accumulo (c.d. "BESS") con le seguenti caratteristiche:

- Potenza nominale complessiva: 23.203,32 kWp
- Potenza nominale complessiva BESS: 15.000,00 kWp.
- Superficie catastale interessata: 42,97 ha.
- Superficie di impianto recintata: 28,94 ha.
- Classificazione architettonica: impianto a terra.
- Ubicazione area di impianto e opere di rete: Comune di Carpi (MO) | Regione Emilia-Romagna.
- Particelle superficie catastale disponibile: F. 16 P.lle 7, 8, 9, 23, 40, 61 | F. 20 P.lle 1, 2, 6, 8, 9, 10, 135 | F. 21 P.lle 3 e 7.
- Particelle superficie di impianto recintata: F. 16 P.lle 7, 8, 9, 23, 40, 61 | F. 20 P.lle 1, 2, 6, 8, 9, 10, 135 | F. 21 P.lle 3 e 7.
- Ditta committente: Energy Aquarius S.r.l.

L'obiettivo del presente lavoro è stato la ricostruzione preliminare del modello geologico e geotecnico locale, necessario per la valutazione della compatibilità delle opere previste da progetto con il contesto di pericolosità geomorfologica in esame.

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 3 di 17			

1. Premessa

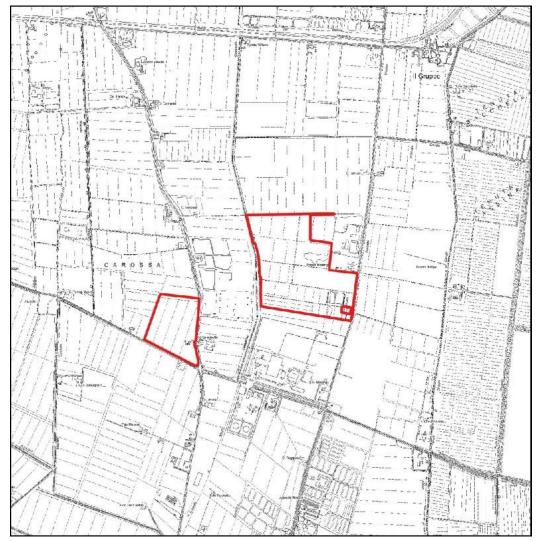
La presente relazione geologica e geotecnica a supporto di un progetto di realizzazione di un impianto fotovoltaico in corrispondenza di un lotto di terreno sito in Comune di Carpi (MO), fa seguito a un'indagine geologico - tecnica preliminare, finalizzata a <u>fornire al Progettista dell'intervento utili indicazioni su: i) i termini litologici presenti in sito, ii) le caratteristiche geotecniche dei terreni costituenti il piano di appoggio delle opere di fondazione in progetto, iii) l'eventuale presenza di fenomeni di dissesto in atto o potenziali (allo stato attuale e alla luce degli interventi in progetto) e iv) le corrette modalità di raccolta e smaltimento delle acque di precipitazione diretta e provenienti dalle aree limitrofe.</u>

Il terreno interessato dall'intervento, situato nel settore N del territorio comunale, è collocato in un'area ad uso agricolo: il progetto in esame prevede la realizzazione di un impianto esteso su una superficie pari a 28,29 ettari circa, collegato alla linea di distribuzione attraverso un cavidotto interrato di circa 957 m. Nel complesso, l'intervento in progetto comporterà modesti movimenti terra, per i quali andrà prevista la realizzazione di opere di sostegno di tipo ordinario.

L'indagine geologico - tecnica è stata estesa ad un significativo intorno dell'area interessata dall'intervento con il preciso intento di definirne le potenzialità di fruizione in relazione all'assetto territoriale, verificando le condizioni di stabilità, l'eventuale presenza di elementi morfogenici dissestivi e lo stato di fatto, traendone le opportune valutazioni sulla compatibilità degli interventi con la situazione idrogeologica locale

La presente indagine è eseguita ai sensi de:

- Ordinanza P.C.M. n. 3274 del 20.03.2003, che definisce la classificazione sismica del territorio nazionale;
- D.M. delle Infrastrutture e dei Trasporti 17 gennaio 2018, Norme tecniche per le costruzioni;
- Piano per l'Assetto Idrogeologico (PAI) del Bacino del Fiume Po;
- Piano Territoriale Regionale di Coordinamento della Regione Emilia-Romagna;
- Piano Territoriale Provinciale di Coordinamento della Provincia di Modena;
- P.U.G. del Comune di Carpi.


Preliminarmente all'esecuzione dell'indagine in sito, è stata condotta una ricerca dei dati bibliografici e della cartografia tecnica disponibili riguardanti l'area in oggetto, nonché degli elaborati geologico - tecnici allegati ai vigenti Piani.

Vengono di seguito esposte alcune note circa le caratteristiche geomorfologiche, geolitologiche, idrogeologiche, idrologiche, geotecniche e sismiche dell'area interessata dal progetto.

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 4 di 17			

2. Caratteri geomorfologici, geolitologici, idrogeologici e idrologici dell'area interessata dall'intervento

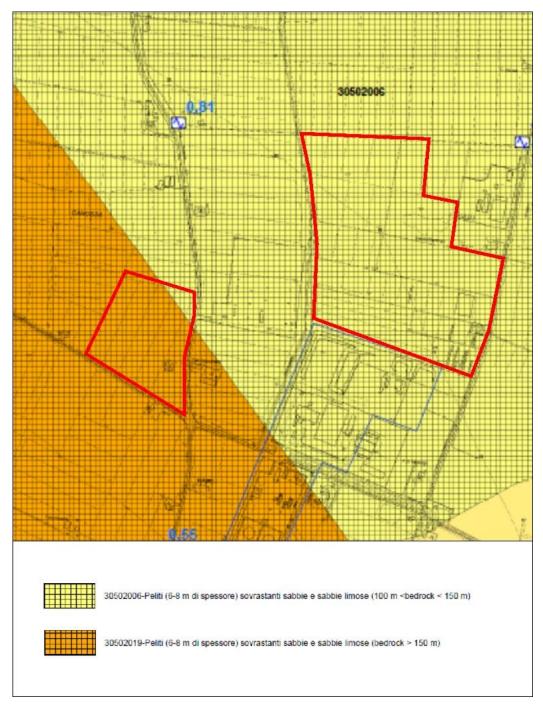
L'area oggetto d'indagine ricade nel territorio comunale di Carpi, nella pianura compresa tra i fiumi Po e Secchia.

Figura 1. Ubicazione dell'area d'indagine, scala 1: 25.000 (le perimetrazioni in rosso si riferiscono alla superficie catastale nella disponibilità del Proponente).

La zona interessata dall'intervento ha come principale caratteristica, dal punto di vista geomorfologico, quella di formare un ambiente di pianura alluvionale, con forme legate all'azione geomorfica esercitata nel recente passato ed attualmente dal reticolo idrografico. Essa è ubicata alla quota media di 20 m s.l.m., in un'area poco antropizzata avente uso in prevalenza agricolo, posta nel settore N del territorio comunale. Le indagini svolte, le informazioni storiche acquisite, nonché l'analisi della cartografia tecnica disponibile, non hanno evidenziato il verificarsi di fenomeni di esondazione significativi per piene ordinarie e straordinarie di corsi d'acqua principali, minori o artificiali che abbiano coinvolto la zona indagata in tempi recenti. A tale merito, si rappresenta che il sito in esame, negli elaborati del vigente Piano di Gestione del Rischio Alluvionale, risulta compreso in aree potenzialmente soggette a fenomeni d'inondazione con scenario L = alluvioni rare – Tr fino a 500 anni.

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 5 di 17			

Nel complesso, dal confronto con la cartografia e le prescrizioni di Piano, l'intervento in oggetto risulta compatibile con la Normativa Generale.


I rilievi eseguiti in sito non hanno evidenziato la presenza, data la disposizione ad acclività molto bassa, di processi di instabilità in atto o potenziali; si è inoltre verificato come i diversi manufatti presenti nelle immediate vicinanze dell'area in oggetto non manifestino lesioni significative e come la presenza di piccole lesioni in alcuni fabbricati sia, con tutta probabilità, attribuibile ad assestamenti strutturali degli edifici stessi.

Alla luce di quanto esposto, l'area in oggetto è da ritenersi complessivamente stabile, escludendo, al momento dell'indagine, fenomeni morfogenici dissestivi in atto o potenziali di particolare entità.

Solo localmente si potranno presentare modeste e puntuali problematiche geomorfologiche connesse con la variazione della composizione e della potenza del materiale sciolto di copertura e del suo stato di consistenza. Potranno quindi verificarsi fenomeni di piccoli assestamenti legati alla circolazione idrica superficiale e sub-superficiale, anche in settori della zona in esame apparentemente assestati, in tempi più o meno lunghi.

Dal punto di vista geolitologico, in base a quanto riportato nella cartografia tecnica disponibile allegata al vigente P.U.G., si evidenzia che i terreni presenti nell'area d'intervento sono di origine continentale e sono rappresentati da depositi alluvionali medio – recente, aventi granulometria in genere fine. In particolare, nell'area d'impianto si rileva la presenza di una copertura di limi argillosi, soprastanti depositi alluvionali a tessitura prevalentemente sabbiosa.

	IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 6 di 17				

Figura 2. Inquadramento geologico dell'area in esame (estratto dalla Carta delle Microzone Omogenee del vigente P.U.G., scala 1: 20.000).

I processi di alterazione e degradazione (azioni pedogenetiche), sui terreni del tipo di quelli affioranti o sub-affioranti nell'area, unitamente a quelli di deposizione eolica verificatisi durante il Quaternario, danno luogo ad una coltre di copertura a composizione prevalente limoso-argillosa di potenza limitata. In sintesi, la sequenza litostratigrafica locale presente nell'area in esame, desunta dalle prove e dai rilievi eseguiti in sito, nonché dai dati di letteratura disponibili, può essere così rappresentata:

• in superficie si riconosce la presenza di una limitata coltre di copertura limoso-argillosa, avente spessore compreso tra 0,5 e 1 m, poco addensata, con locali riporti antropici eterogenei;

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"							
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 7 di 17			

• al di sotto della suddetta coltre si ritrovano i termini alluvionali aventi granulometria fine fino a 8 m circa (limi e argille), per poi passare a media (sabbie), aventi grado d'addensamento/consistenza mediamente crescente in funzione della profondità.

Dal punto di vista idrogeologico, l'indagine eseguita non ha evidenziato, nell'area e nella zona circostante, la presenza di emergenze idriche (sorgenti), mentre si segnalano alcuni punti di captazione di acque sotterranee (pozzi).

I terreni presenti nel sito in esame presentano le caratteristiche di un acquifero in grado di ospitare una falda di tipo freatico, in quanto i litotipi di origine alluvionale sono caratterizzati da un grado di permeabilità da medio – basso a medio a seconda dei terreni costituenti il sottosuolo.

L'assetto geologico e geomorfologico del territorio costituisce un elemento di controllo sulla distribuzione delle acque nel suolo: in particolare, si evidenzia che la falda ospitata nei terreni in esame, avente carattere superficiale, risulta direttamente connessa con il locale reticolo idrografico.

La superficie libera della falda può subire moderate variazioni di livello durante l'anno a causa dei differenti apporti meteorici e a causa delle attività agricole, stabilizzandosi, nell'area d'intervento, ad una quota compresa tra -1 e -2 m da p.c.

Secondo quanto dedotto dall'indagine eseguita a scala locale, nonché sulla base degli elaborati progettuali disponibili, si rappresenta che le opere fondazionali dei manufatti in progetto interagiranno con le acque di falda: alla luce di tale considerazione, si evidenzia quindi che i manufatti in progetto dovranno essere realizzati utilizzando materiali compatibili con la presenza costante di acqua nel sottosuolo.

Dal punto di vista idrologico, si rappresenta che il sito in esame risulta essere soggetto ad un rischio idraulico di grado basso, ponendosi in un'area soggetta a modesti eventi della dinamica idraulica del locale reticolo idrografico.

Come già evidenziato nelle considerazioni geomorfologiche, si sottolinea che le indagini svolte, le informazioni storiche acquisite, nonché l'analisi della cartografia tecnica disponibile, non hanno evidenziato il verificarsi di fenomeni di esondazione per piene ordinarie e straordinarie di corsi d'acqua principali, minori o artificiali di particolare entità che abbiano coinvolto la zona indagata in tempi recenti. A tale merito, si rappresenta che il sito in esame, negli elaborati del vigente Piano di Gestione del Rischio Alluvionale, risulta compreso in aree potenzialmente soggette a fenomeni d'inondazione con scenario L = alluvioni rare – Tr fino a 500 anni.

Alla luce di quanto sopra indicato, nonché valutata la natura dell'intervento in progetto, si conferma la compatibilità di questo con le condizioni di pericolosità locale, non comportando incrementi del rischio idraulico locale.

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"						
	E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 8 di 17	

3. Parametrizzazione geotecnica del sito d'intervento

Di seguito si riporta una tabella riassuntiva dei parametri mediati da attribuire ai terreni presenti in sito desunti dai dati disponibili per l'area in esame ed un suo intorno significativo:

					VALORI MEDI		EDI
Unità litologica	Litologia	Nspt	Tipo	Classificazione A.G.I.	γ m	φ′ _m	Cu _m
					t/m³	۰	kg/cm²
1	Coltre superficiale (profondità massima 1 m)	5-10	Incoerente	Poco addensato	1,7	20	0,0
2	Depositi alluvionali a granulometria fine (fino a 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	25	0,0 - 0,5
3	Depositi alluvionali a granulometria media (oltre 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	30	0,0 - 0,25

dove:

Nspt: numero colpi riferibili ad una prova SPT

γ: peso di volume **φ**: angolo di attrito

Cu: coesione non drenata

I depositi dello strato 2, che costituiranno il piano d'appoggio delle strutture di fondazione delle opere in progetto dell'impianto fotovoltaico, presentano delle caratteristiche geotecniche mediocri: questi risultano essere, infatti, moderatamente consistenti.

Lo schema geotecnico valido per l'area d'intervento, dedotto dalle indagini eseguite, è il seguente:

- piano campagna di riferimento locale: orizzontale;
- profondità media della falda: 1,5 m;
- terreno di fondazione: Unità litologica 2;
- volume significativo: Unità litologica 1+2;
- valori medi parametri: vedasi tabella precedente.

Di seguito si riportano i valori caratteristici coincidenti con i valori medi da adottare nei calcoli ove vengano previste Combinazioni contenenti M1, ai sensi del D.M. 17.01.2018.

						VALORI CARATTERISTICI			
Unità litologica	Litologia	Nspt	Tipo Classificazione A.G.I.		γ k	ф' к	Cu _k		
					t/m³	•	kg/cm²		
1	Coltre superficiale (profondità massima 1 m)	5-10	Incoerente	Poco addensato	1,7	20	0,0		
2	Depositi alluvionali a granulometria fine (fino a 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	25	0,0 - 0,5		
3	Depositi alluvionali a granulometria media (oltre 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	30	0,0 - 0,25		

dove:

Nspt: numero colpi riferibili ad una prova SPT;

γk: peso di volume;

Cuk: coesione non drenata;

	IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"					
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 9 di 17		

φ'k: angolo di attrito interno efficace.

Di seguito si riportano i valori di progetto coincidenti con i valori medi da adottare nei calcoli ove vengano previste Combinazioni contenenti M2, dividendo i valori caratteristici per un coefficiente riduttivo parziale secondo quanto indicato nell'Eurocodice 7 e nel D.M. 17.01.2018 – NTC. Tali parametri sono stato ottenuti dividendo i valori caratteristici per i seguenti coefficienti di riduzione:

 $\gamma d = \gamma k/1;$ Cd = Cuk/1,4; $\Phi' d = \Phi' k/1,25.$

				VALC	RI DI PRO	OGETTO	
Unità litologica	Litologia	Nspt	Tipo	Classificazione A.G.I.	γ _d t/m³	Ф'а	Cu _d
1	Coltre superficiale (profondità massima 1 m)	5-10	Incoerente	Poco addensato	1,7	16	0,0
2	Depositi alluvionali a granulometria fine (fino a 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	20	0,0 - 0,35
3	Depositi alluvionali a granulometria media (oltre 8 m)	10-20	Coesivo	Moderatamente consistente	1,9	24	0,0 - 0,18

dove:

Nspt: numero colpi riferibili ad una prova SPT;

 \mathbf{v}_{d} : peso di volume;

Cu_d: coesione non drenata;

 ϕ'_d : angolo di attrito interno efficace.

Una volta ottenuti i predetti valori caratteristici e di progetto da utilizzarsi nelle diverse tipologie di verifiche da parte del Progettista, tutte le opere e le componenti strutturali dovranno essere progettate, eseguite, collaudate e soggette a manutenzione in modo tale da consentirne la prevista utilizzazione in forma economicamente sostenibile e con il livello di sicurezza previsto dalla normativa vigente.

Le opere e le varie tipologie strutturali dovranno possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU);
- capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone, o comportare la perdita di beni, o provocare gravi danni ambientali e sociali, oppure mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- robustezza nei confronti di azioni eccezionali: capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti.

Il superamento di uno stato limite ultimo (SLU) ha carattere irreversibile e si definisce collasso. Il superamento di uno stato limite di esercizio (SLE) può avere carattere reversibile o irreversibile.

Il superamento di uno stato limite di esercizio (SLE) ha carattere reversibile nel caso che si esamini una situazione in cui la deformazione o il danno cessino con l'estinguersi della causa che ha determinato il superamento dello stato limite. Se, pur non avendosi il collasso, l'opera subisce lesioni tali da renderla

	IMPIANTO FOTOVOLTAICO "CARPI - Fos	soli"		
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 10 di 17

inutilizzabile, in quest'ultimo caso siamo in presenza di danni irreversibili o di deformazioni permanenti inaccettabili. Ad esempio, nel caso di una fondazione superficiale ciò può verificarsi quando i cedimenti del terreno superano una soglia critica, provocando delle distorsioni angolari non accettabili negli elementi della sovrastruttura.

Per le opere esistenti è possibile fare riferimento a livelli di sicurezza diversi da quelli delle nuove opere ed è anche possibile considerare solo gli stati limite ultimi (SLU).

La verifica della sicurezza nei confronti degli stati limite ultimi (SLU) di resistenza si ottiene con il "Metodo semiprobabilistico dei Coefficienti parziali" di sicurezza tramite l'equazione:

Rd > Ed

con:

- Rd = resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate (di pertinenza del geotecnico e dello strutturista);
- Ed = valore di progetto dell'effetto delle azioni, valutato in base ai valori di progetto nelle varie combinazioni di carico (di pertinenza dello strutturista).

Disponendo dei carichi indotti dalle strutture in progetto, nonché dei parametri caratteristici e di progetto forniti, dovranno essere effettuate dal Progettista le verifiche ai diversi stati limite del sistema geotecnico applicando le combinazioni e i coefficienti parziali sui parametri previsti dal D.M. 17.01.2018.

	IMPIANTO FOTOVOLTAICO "CARPI - Fo	ssoli"		
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 11 di 17

4. Caratteri sismici dell'area d'indagine

Secondo l'Ordinanza 3274 della Presidenza del Consiglio dei Ministri, aggiornata con le comunicazioni fornite dalle Regioni, vengono individuate, nelle "norme tecniche", 4 valori di accelerazione orizzontale di ancoraggio dello spettro di risposta elastico (Ag/g). Ciascuna zona viene individuata secondo valori di accelerazione di picco orizzontale del suolo (Ag), con probabilità di superamento pari al 10% in 50 anni (Ag/g).

	Accelerazione orizzontale con probabilità di	Accelerazione orizzontale di ancoraggio dello spettro
Zona	superamento pari	di risposta elastico
	al 10% in 50 anni [Ag/g]	(Norme Tecniche) [Ag/g]
1	> 0,25	0,35
2	0,15 – 0,25	0,25
3	0,05 – 0,15	0,15
4	< 0,05	0,05

Nell'ambito della riclassificazione sismica del territorio nazionale, secondo l'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003, aggiornata con la Deliberazione della Giunta Regionale n.1435 del 21 luglio 2003 e successivamente con la n.1164 del 23 luglio 2018, il territorio comunale di Carpi risulta classificato nell'ambito della Zona 3. Tale zona corrisponde a:

- Accelerazione orizz. con probabilità di superamento pari al 10% in 50 anni [Ag/g] = 0.05 0.15;
- Accelerazione orizz. di ancoraggio dello spettro di risposta elastico [Ag/g] = 0,15.

Categorie di profilo stratigrafico del suolo di fondazione

Ai fini della definizione della azione sismica di progetto, come riportato nel D.M. delle Infrastrutture 17.01.2018, punto 3.2.2 "Categorie di sottosuolo e condizioni topografiche", si definiscono le seguenti categorie di profilo stratigrafico del suolo di fondazione (Tabella 3.2.II - le profondità si riferiscono al piano di posa delle fondazioni superficiali, oppure alla quota di testa dei pali nel caso di fondazioni speciali):

Categoria	Caratteristiche della superficie topografica
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde
Α	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-
В	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-
C	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
C	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-
D	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
D	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-
E	rie C o D, con profondità del substrato non superiore a 30 m.

Nelle definizioni precedenti Vs,eq è la velocità media di propagazione delle onde di taglio e viene calcolata con la seguente espressione:

	IMPIANTO FOTOVOLTAICO "CARPI - Fos	soli"		
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 12 di 17

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove hi e Vi indicano lo spessore (in m) e la velocità (in m/s) delle onde di taglio dello strato i-esimo, mentre H indica la profondità del substrato (definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s).

Il terreno indagato, in base alle caratteristiche geotecniche dei litotipi presenti in sito nonché da quanto emerso dalle indagini eseguite, rientra all'interno della categoria C.

Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti SS e CC valgono 1. Per le categorie di sottosuolo B, C, D ed E i coefficienti SS e CC possono essere calcolati, in funzione dei valori di O Fo e Tc* relativi al sottosuolo di categoria A, mediante le espressioni fornite nella Tab. 3.2.V del D.M., nelle quali g è l'accelerazione di gravità ed il tempo T c * è espresso in secondi.

Tabella 3.2.V - Espressioni di Ss e di Cc

Tabella 5.2.4 – Espression at 55 e at CC					
Categoria sottosuolo	Ss	$C_{\mathbf{c}}$			
A	1,00	1,00			
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$			
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	1,25·(T _C *) ^{-0,33}			
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,05 \cdot (T_C^*)^{-0,50}$			
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15·(T _C *) ^{-0,40}			

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- ag accelerazione orizzontale massima del terreno;
- Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T c * periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno Tr considerati dalla pericolosità sismica, i 3 parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo a:

- ag il valore previsto dalla pericolosità sismica;
- Fo e Tc* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica (la condizione di minimo è imposta operando ai minimi quadrati, su spettri di risposta normalizzati ad uno, per ciascun sito e ciascun periodo di ritorno).

	IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"						
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 13 di 17			

Sempre in merito alle indicazioni fornite nel suddetto punto 3.2.2, si rappresenta che la risposta sismica locale di un sito, oltre che dalle caratteristiche litostratigrafiche del sottosuolo, dipende anche dalla conformazione morfologica dei luoghi. Pertanto, qualora le caratteristiche topografiche dei luoghi non risultino particolarmente complesse (caso nel quale è necessario prevedere una modellizzazione particolare del sito, necessaria per identificare correttamente le caratteristiche di risposta sismica locale), vengono individuate 4 diverse categorie topografiche, rappresentative di altrettante configurazioni superficiali semplici, riportate nella successiva tabella (Tabella 3.2.IV).

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Come riportato nel Decreto, le su esposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

L'area d'intervento, secondo quanto verificato dai rilevamenti eseguiti in sito, ricade in una zona ad acclività molto bassa: pertanto, tale area risulta essere compresa nella categoria topografica T1.

A partire dall'entrata in vigore del D.M. 14 gennaio 2008, ora sostituito dal D.M. 17.01.2018, la stima della pericolosità sismica, intesa come accelerazione massima orizzontale su suolo rigido (Vs,eq >800 m/s), viene definita mediante un approccio "sito dipendente" e non più tramite un criterio "zona dipendente". Ciò comporta delle non trascurabili differenze nel calcolo dell'accelerazione sismica di base rispetto alle precedenti normative.

Ai fini della stima dell'azione sismica di progetto relativa al sito ubicato nel territorio comunale in oggetto, con le precedenti normative in campo antisismico, applicando il criterio "zona dipendente" avremmo potuto stimare l'accelerazione di base (senza considerare l'incremento dovuto ad effetti locali dei terreni) in maniera automatica, poiché essa sarebbe stata direttamente correlata alla Zona sismica di appartenenza del Comune (nel caso in esame, Zona sismica 3).

La classificazione sismica del territorio è scollegata dalla determinazione dell'azione sismica di progetto, mentre rimane il riferimento per la trattazione di problematiche tecnico-amministrative connesse con la stima della pericolosità sismica. Pertanto, la stima dei parametri spettrali necessari per la definizione dell'azione sismica di progetto viene effettuata calcolandoli direttamente per il sito in esame, utilizzando come riferimento le coordinate geografiche (o l'indirizzo ove disponibile), riportate nel reticolo di riferimento.

Ai fini della determinazione della pericolosità sismica il primo passo consiste nella determinazione di ag (accelerazione orizzontale massima attesa su sito di riferimento rigido). Per tale determinazione è necessario conoscere, come anticipato, le coordinate geografiche dell'opera da verificare. Le coordinate geografiche dovranno essere trasformate da gradi sessagesimali a decimali. Si determina, quindi, la maglia di riferimento in base alle tabelle dei parametri spettrali fornite dal ministero e, sulla base della maglia interessata, si determinano i valori di riferimento del punto come media pesata dei valori nei vertici della maglia moltiplicati per le distanze dal punto.

Di seguito si riportano i parametri sismici di riferimento validi per il sito in esame.

	IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"					
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 14 di 17		

Tipo di elaborazione: stabilità dei pendii e fondazioni

Sito in esame.

latitudine: 44,850485 longitudine: 10,898231

Classe: 2
Vita nominale: 50

Siti di riferimento

Sito 1 ID: 15170 Lat: 44,8564 Lon: 10,8822 Distanza: 1426,001 Sito 2 ID: 15171 Lat: 44,8579 Lon: 10,9526 Distanza: 4365,294 Lat: 44,8079 Sito 3 ID: 15393 Lon: 10,9547 Distanza: 6498,907 Sito 4 ID: 15392 Lat: 44,8064 Lon: 10,8843 Distanza: 5021,115

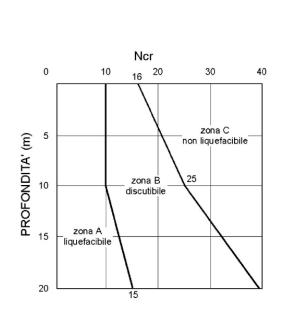
Parametri sismici

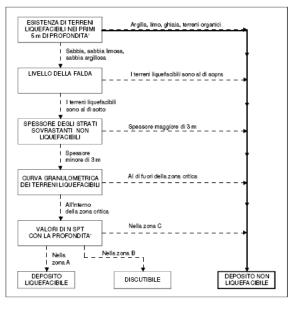
Categoria sottosuolo: C
Categoria topografica: T1
Periodo di riferimento: 50anni

Coefficiente cu: 1

Operatività (SLO):				Danno (SLD):			
Probabilità di superamento:	81	%		Probabilità di superamento:	63	%	
Tr:		30	[anni]	Tr:		50	[anni]
ag:		0,040 g		ag:		0,050 g	
Fo:		2,563		Fo:		2,521	
Tc*:		0,247	[s]	Tc*:		0,265	[s]
Salvaguardia della vita (SLV):				Prevenzione dal collasso (SLC):			
Probabilità di superamento:	10	%		Probabilità di superamento:	5	%	
Tr:		475	[anni]	Tr:		975	[anni]
ag:		0,148 g		ag:		0,200 g	
Fo:		2,581		Fo:		2,530	
Tc*:		0,269	[s]	Tc*:		0,276	[s]

Coefficienti Sismici


SLO:			SLD:		
	Ss:	1,500		Ss:	1,500
	Cc:	1,670		Cc:	1,630
	St:	1,000		St:	1,000
	Kh:	0,012		Kh:	0,015
	Kv:	0,006		Kv:	0,008
	Amax:	0,582		Amax:	0,736
	Beta:	0,200		Beta:	0,200
SLV:			SLC:		
	Ss:	1,470		Ss:	1,400
	Cc:	1,620		Cc:	1,610
	St:	1,000		St:	1,000
	Kh:	0,052		Kh:	0,067
	Kv:	0,026		Kv:	0,034
	Amax:	2,135		Amax:	2,742
	Beta:	0,240		Beta:	0,240


Per la valutazione della suscettibilità alla liquefazione in fase sismica del deposito in esame, si fa ricorso alla procedura semplificata proposta da Sherif & Ishibashi (1978); dall'abaco sottostante rileva che il deposito in

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"					
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 15 di 17	

esame, non rientra tra quelli passibili di liquefazione in fase sismica, per assenza dei seguenti fattori predisponenti: granulometria.

Profili critici di N_{SPT} nei confronti della liquefazione

Deposito in esame.

Dall'analisi effettuata è emerso che i terreni presenti in sito, al di sotto del piano di appoggio delle opere fondazionali dei manufatti in progetto, non risultano liquefacibili.

NOTE:

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"					
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 16 di 17	

5. Considerazioni conclusive

Alla luce delle indagini geologico - tecniche eseguite nell'area d'intervento ed in quelle ad esso circostante, si può concludere che il sito debba ritenersi idoneo ad accogliere le opere in progetto ed i relativi carichi indotti dalle strutture, nell'assoluto rispetto delle raccomandazioni geologiche l.s. di seguito fornite.

Si attesta, pertanto, la fattibilità geologico – tecnica dell'intervento in progetto.

Trattandosi della realizzazione di un intervento collocato all'interno di un contesto già parzialmente antropizzato, si ritiene che gli effetti indotti sull'ambiente circostante saranno contenuti.

Stante quanto indicato nei capitoli precedenti, si riportano alcune prescrizioni da seguire obbligatoriamente in fase di progettazione esecutiva e di realizzazione lavori.

- A supporto della progettazione esecutiva andrà realizzata una campagna d'indagini in situ e in laboratorio, atta a definire nel dettaglio il modello geologico, geotecnico, idrogeologico e sismico del sito d'intervento. Tale indagine dovrà prevedere l'esecuzione delle seguenti attività:
 - Esecuzione di sondaggi geognositici a carotaggio continuo spinti fino ad almeno 10 m di profondità, con densità di almeno 2 carotaggi per ettaro e prelievo di almeno un campione indisturbato per sondaggio da sottoporre a prove di laboratorio;
 - Esecuzione di prove penetrometriche dinamiche pesanti, spinte fino a rifiuto o almeno 10 m di profondità, con densità pari a quella dei suddetti carotaggi;
 - Esecuzione di tomografie geoelettriche all'interno del lotto d'intervento, sia in direzione del massimo allungamento che della larghezza di questo;
 - Esecuzione di almeno un'indagine sismica superficiale di tipo MASW per ogni zona caratterizzata da una diversa litologia;
 - Esecuzione di prove CBR e proctor su campioni prelevati in sito, atti a determinare le caratteristiche meccaniche dei materiali superficiali;
 - Esecuzione di prove geotecniche e chimiche di laboratorio sui campioni prelevati nei carotaggi.
- In fase esecutiva, andrà prevista, quando necessario, la figura del Geologo, al fine di:
 - 1. valutare eventuali problematiche di carattere geologico tecnico ed idrogeologico emerse, non previste in fase progettuale, fornendone le adeguate soluzioni tecniche;
 - 2. valutare, mediante apposite prove sui fronti di scavo e/o sul piano di fondazione, i caratteri geologici e geotecnici dei litotipi ricadenti nel volume significativo di terreno dei manufatti in costruzione, ai fini delle verifiche strutturali di questi;
 - 3. supportare la D.L. circa possibili varianti resesi necessarie in corso d'opera;
 - 4. valutare la corretta esecuzione di tutte le attività coinvolgenti la componente geologica l. s.;
 - 5. effettuare un'attenta analisi visiva del terreno di fondazione per accertare la presenza di eventuali disomogeneità dello stesso e, se rilevate, fornire adeguate soluzioni esecutive atte a garantire il buon esito dell'intervento in oggetto.
- Evitare fenomeni di appoggio differenziato su porzioni di terreno a diverso grado d'addensamento e consolidamento, il tutto al fine di evitare cedimenti o dissesti.
- Al di sotto delle fondazioni in c.a., ove previste, dovrà essere gettato in opera un "magrone" di sottofondo in ghiaia o misto granulare anidro, ben costipato e livellato, od eventualmente in cls, di adeguato spessore ed estensione, con eventuale rete elettrosaldata.

IMPIANTO FOTOVOLTAICO "CARPI - Fossoli"					
E-10	Relazione geologica-geotecnica	rev 01	15.07.2024	Pagina 17 di 17	

- Ogni fronte aperto anche non previsto da progetto, ma resosi necessario in fase operativa dovrà
 essere adeguatamente contrastato e sostenuto dalle necessarie opere controterra (sia di tipo
 provvisionale, sia, laddove divenuto necessario, di tipo definitivo), al fine di garantire la sicurezza in
 fase esecutiva ed a lavori ultimati dell'area d'intervento e di un suo congruo intorno. Nel caso si
 verifichino situazioni di disomogeneità, sarà necessario procedere a sistemazioni differenziate.
- I lavori di scavo dovranno essere eseguiti a campioni di ridotte dimensioni ed in periodi di scarse precipitazioni, ponendo l'usuale attenzione per le pareti verticalizzate, specie in coltre, ove potrebbero verificarsi dei dissesti, evitando lunghe esposizioni dei fronti di scavo agli agenti atmosferici.
- I riporti, temporanei e/o definitivi, andranno depositati in aree la cui stabilità, puntuale e del loro intorno, sia stata oggetto di attenta verifica in fase esecutiva, al fine di garantire la sicurezza dei luoghi nel tempo.
- Osservare attentamente, da parte dell'Impresa esecutrice, sotto il controllo del Responsabile della sicurezza e della D.L., l'assoluto rispetto delle norme in materia di sicurezza nei cantieri.
- Andranno posti in essere tutti gli interventi, gli accorgimenti e le cautele atte a garantire la sicurezza dei luoghi.

La presente relazione costituisce adempimento alle Norme Tecniche di cui al D.M. 17.01.2018.