

AGENZIA INTERREGIONALE PER IL FIUME PO — PARMA

Strada Giuseppe Garibaldi 75, I-43121 Parma

MO-E-1357 - ADEGUAMENTO DEI MANUFATTI DI REGOLAZIONE E SFIORO DELLA CASSA DI ESPANSIONE DEL FIUME SECCHIA COMPRENSIVO DELLA PREDISPOSIZIONE DELLA POSSIBILITÀ DI REGOLAZIONE IN SITUAZIONI EMERGENZIALI ANCHE PER PIENE ORDINARIE IN RELAZIONE ALLA CAPACITÀ DI DEFLUSSO DEL TRATTO ARGINATO (EX CODICE 10969) E AVVIO DELL'ADEGUAMENTO IN QUOTA E POTENZIAMENTO STRUTTURALE DEI RILEVATI ARGINALI DEL SISTEMA CASSA ESPANSIONE ESISTENTE

MO-E-1273 - LAVORI DI AMPLIAMENTO E ADEGUAMENTO DELLA CASSA DI ESPANSIONE DEL FIUME SECCHIA NEL COMUNE DI RUBIERA (RE) (ACCORDO DI PROGRAMMA MINISTERO - RER - PARTE A)

PROGETTO DEFINITIVO

R.09 - RELAZIONE SULLE STRUTTURE

IL RAGGRUPPAMENTO TEMPORANEO DI PROFESSIONISTI:

CAPOGRUPPO MANDATARIA PROGETTAZIONE GENERALE – INGEGNERIA IDRAULICA E STRUTTURALE

ING. FULVIO BERNABEI DIZETA INGEGNERIA ING. STEFANO ADAMI ING. LAURA GRILLI ING. GIANLUIGI SEVINI

ING. PAOLO SANAVIA

MANDANTE RAPPORTI CON ENTI TERZI - MODELLISTICA IDROLOGICA E IDRAULICA - IDROGEOLOGIA

MAJONE&PARTNERS

ING. DENIS CERLINI ING. MARCO BELICCHI ING. NICOLA PESSARELLI (CSP) ING. MICHELE FERRARI PER IL R.T.P.:

IL PROGETTISTA GENERALE DOTT. ING. FULVIO BERNABEI

MANDANTE INGEGNERIA STRUTTURALE

MANDANTE ASPETTI AMBIENTALI

ING. MASSIMO SARTORFILL ING. BENIAMINO BARENGHI DOTT. AGR. ALESSIA MANICONE DOTT.SSA CHIARA LUVIE

MANDANTE GFOLOGIA

GEOL. CARLO CALEFEL GEOL. FRANCESCO CERUTTI IL RUP:

DOTT. ING. FEDERICA PELLEGRINI

MANDANTE ASPETTI PAESAGGISTICI

STUDIO PANDAKOVIC ARCH. ANGELO DAL SASSO

CONSULENTE INGEGNERIA GEOTECNICA

PROF. ING. FRANCESCO COLLESELLI ING. GIUSEPPE COLLESELLI

CONSULENTE PIANO PARTICELLARE DI ESPROPRIO VALUTAZIONI ARCHEOLOGICHE

GEOM, MARCO SOZZE

CONSULENTE

DOTT SSA IVANA VENTURINI

DATA: LUGLIO 2019

					Bittii Loc	2010
ev.01	REV.	DATA	DESCRIZIONE MODIFICA	REDATTO	CONTR.	APPR.
- Re	01					
7.3 F	02				·	
Mod						

A TERMINI DI LEGGE CI SI RISERVA LA PROPRIETA' DEL PRESENTE ELABORATO, CHE PERTANTO NON PUO' ESSERE RIPRODOTTO E/O CEDUTO A TERZI SENZA AUTORIZZAZIONE DELLA DIZETÀ INCIENTA

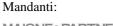


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

INDICE

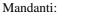
1	Pre	messe	7			
2	Noi	rmativa di riferimento	9			
3	Мо	dellazione in SAP2000	11			
	3.1	Sintesi funzionalità generali	11			
	3.2	Sistemi di riferimento globale	13			
	3.3	Sistemi di riferimento locale per elementi Frame (travi, pilastri)	14			
	3.4	Sistemi di riferimento locale per elementi Shell				
		(solette, pareti, platee)	16			
	3.5	Casi di carico	19			
	3.6	Casi di analisi in condizioni statiche	20			
	3.7	Casi di analisi in condizioni dinamiche	21			
4	Sce	elta del copriferro	23			
5	Sbarramento esistente					
	5.1	Descrizione delle opere	25			
	5.2	Disegni di riferimento	26			
	5.3	Caratteristiche dei materiali strutturali	28			
		5.3.1 Calcestruzzo costituente lo sbarramento				
		esistente	28			
		5.3.2 Calcestruzzo strutturale di classe C25/30	31			
		5.3.3 Acciaio per cemento armato tipo B450C	33			
	5.4	Valutazione dell'azione sismica	34			
	5.5	Definizione dei carichi e delle loro combinazioni	36			
	5.6	5.6 Modellazione e risultati dell'analisi				
		5.6.1 Risultati SLU	43			
		5.6.2 Risultati SLE	49			

5.7	Verifiche effettuate	53
Mu	ro arginale	54
6.1	Descrizione delle opere	54
6.2	Disegni di riferimento	55
6.3	Caratteristiche dei materiali strutturali	57
	6.3.1 Calcestruzzo strutturale di classe C25/30	57
	6.3.2 Acciaio per cemento armato tipo B450C	59
6.4	Valutazione dell'azione sismica	60
6.5	Definizione dei carichi e delle loro combinazioni	62
6.6	Modellazione e risultati dell'analisi	65
	6.6.1 Risultati SLU	66
	6.6.2 Risultati SLE	69
6.7	Verifiche effettuate	73
	6.7.1 Ripartitori orizzontali	74
	6.7.2 Armatura verticale	80
	6.7.3 Armatura verticale – porzione inferiore	86
Maı	nufatto regolatore	92
7.1	Descrizione delle opere	92
7.2	Disegni di riferimento	95
7.3	Caratteristiche dei materiali strutturali	97
	7.3.1 Calcestruzzo strutturale di classe C20/25	97
	7.3.2 Calcestruzzo strutturale di classe C25/30	99
	7.3.3 Acciaio per cemento armato tipo B450C	101
7.4	Valutazione dell'azione sismica	102
7.5	Definizione dei carichi e delle loro combinazioni	104
7.6	Modellazione e risultati dell'analisi	109
	7.6.1 Risultati SLU	111
	Mui 6.1 6.2 6.3 6.4 6.5 6.6 Mai 7.1 7.2 7.3	 6.2 Disegni di riferimento 6.3 Caratteristiche dei materiali strutturali 6.3.1 Calcestruzzo strutturale di classe C25/30 6.3.2 Acciaio per cemento armato tipo B450C 6.4 Valutazione dell'azione sismica 6.5 Definizione dei carichi e delle loro combinazioni 6.6 Modellazione e risultati dell'analisi 6.6.1 Risultati SLU 6.6.2 Risultati SLE 6.7 Verifiche effettuate 6.7.1 Ripartitori orizzontali 6.7.2 Armatura verticale 6.7.3 Armatura verticale – porzione inferiore Manufatto regolatore 7.1 Descrizione delle opere 7.2 Disegni di riferimento 7.3 Caratteristiche dei materiali strutturali



		7.6.2 Risultati SLE	116
	7.7	Verifiche effettuate	120
8	Maı	nufatto di derivazione laterale	122
	8.1	Descrizione delle opere	122
	8.2	Disegni di riferimento	125
	8.3	Caratteristiche dei materiali strutturali	126
		8.3.1 Calcestruzzo strutturale di classe C20/25	126
		8.3.2 Calcestruzzo strutturale di classe C25/30	128
		8.3.3 Acciaio per cemento armato tipo B450C	130
	8.4	Valutazione dell'azione sismica	131
	8.5	Definizione dei carichi e delle loro combinazioni	133
	8.6	Modellazione e risultati dell'analisi	137
		8.6.1 Muro di sponda sp. 0.8 m lato monte	139
		8.6.1.1 Risultati SLU	139
		8.6.1.2 Risultati SLE	143
		8.6.2 Muro di sponda sp. 0.8 m lato valle	145
		8.6.2.1 Risultati SLU	145
		8.6.2.2 Risultati SLE	148
		8.6.3 Muro di sponda sp. 1.5 m	149
		8.6.3.1 Risultati SLU	149
		8.6.3.2 Risultati SLE	152
		8.6.4 Pile	154
		8.6.4.1 Risultati SLU	154
		8.6.4.2 Risultati SLE	157
		8.6.5 Soletta di copertura	158
		8.6.5.1 Risultati SLU	158
		8.6.5.2 Risultati SLE	161

		8.6.6 Trave frontale	165		
		8.6.6.1 Risultati SLU	165		
		8.6.6.2 Risultati SLE	168		
	8.7	Verifiche effettuate	169		
		8.7.1 Muro di sponda sp. 0.8 m lato monte	173		
		8.7.2 Muro di sponda sp. 0.8 m lato valle	203		
		8.7.3 Muro di sponda sp. 1.5 m	221		
		8.7.4 Pile	240		
		8.7.5 Soletta di copertura	258		
		8.7.6 Trave frontale	270		
9	Sel	ezione dei sistemi di appoggio travi e			
	dim	ensionamento pile dell'impalcato	282		
	9.1	Selezione dei sistemi di appoggio travi	282		
		9.1.1 Trave UH80P	284		
		9.1.1.1 Calcolo della forza verticale di progetto	285		
		9.1.1.2 Calcolo della forza orizzontale di progetto	287		
		9.1.1.3 Tipologia di appoggio selezionata	288		
		9.1.2 Trave VH80P	290		
		9.1.2.1 Calcolo della forza verticale di progetto	291		
		9.1.2.2 Calcolo della forza orizzontale di progetto	293		
		9.1.2.3 Tipologia di appoggio selezionata	294		
	9.2	Dimensionamento pile dell'impalcato	296		
		9.2.1 Predimensionamento	298		
		9.2.2 Verifica a taglio	300		
		9.2.3 Verifica a pressoflessione nel piano forte	301		
10	Dim	nensionamento paratoie	302		
	10.1 Manufatto di sbarramento e regolazione				



10.1.1Caratteristiche tecniche	304
10.1.2Materiali	306
10.1.3 Verifica della struttura principale	308
10.1.3.1 Verifica delle travi intermedie	310
10.1.3.2 Verifica della trave di soglia	312
10.1.3.3 Verifica dei pannelli	314
10.1.4 Verifica delle ruote e delle rotaie	315
10.1.4.1 Pressione hertziana	315
10.1.4.2 Verifica dei perni	316
10.1.4.3 Pressione specifica sulla boccola	316
10.1.4.4 Verifica delle rotaie	317
10.1.5Forze di manovra	318
10.1.6Trave di supporto del cilindro	323
10.1.7Deformabilità del diaframma	324
10.2 Manufatto di derivazione nell'invaso laterale	325
10.2.1 Caratteristiche tecniche	325
10.2.2Materiali	327
10.2.3 Verifica della struttura principale	329
10.2.3.1 Verifica delle travi intermedie	332
10.2.3.2 Verifica della trave di soglia	334
10.2.3.3 Verifica dei pannelli	336
10.2.4 Verifica delle ruote e delle rotaie	337
10.2.4.1 Pressione hertziana	337
10.2.4.2 Verifica dei perni	338
10.2.4.3 Pressione specifica sulla boccola	338
10.2.4.4 Verifica delle rotaie	339
10.2.5Forze di manovra	340

10.2.6Trave di supporto del cilindro	343
10.2.7Deformabilità del diaframma	344

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

1 Premesse

La presente relazione riporta le analisi e le verifiche strutturali atte al dimensionamento dei manufatti in calcestruzzo (armato e non) e delle strutture metalliche previsti nell'ambito dei seguenti progetti:

- (MO-E-1273) Lavori di ampliamento della cassa di laminazione del fiume Secchia, comune di Rubiera (RE) (accordo di programma ministero – per – parte A) CUP: B98G11000320001;
- (MO-E-1357) Interventi di adeguamento del sistema di laminazione delle piene della cassa di espansione del fiume secchia (provincia di Modena) (ordinanza 1/2018 del 07.11.2018) CUP: B94H1600069002.

Nello specifico, nel Capitolo 2 è chiarita quale sia la normativa sulla cui base sono state effettuate le verifiche. Riferimenti dettagliati a paragrafi e tabelle in normativa sono precisati puntualmente ove ritenuto opportuno negli altri capitoli.

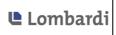
Il Capitolo 3 riporta le specifiche inerenti il software SAP2000 utilizzato ai fini della pre-analisi strutturale per generare modelli tridimensionale delle opere.

Nel Capitolo 4 sono esposte le considerazioni effettuate a monte della scelta del copriferro (per elementi armati).

Ciascuno dei capitoli dal 5 all'8 è dedicato ad un manufatto specifico e riporta:

- la descrizione dettagliata dell'opera e degli elementi strutturali che la costituiscono:
- l'elenco di tutti gli elaborati grafici in cui è rappresentata l'opera in esame;
- la caratterizzazione meccanica dei materiali di cui si costituiscono gli elementi strutturali;
- la valutazione dell'azione sismica;
- la definizione dei carichi e delle loro combinazioni;
- la modellazione e i risultati dell'analisi;
- le verifiche effettuate.

Il Capitolo 9 riporta le procedure effettuate per la selezione dei sistemi di appoggio delle travi da ponte impiegate nella realizzazione dell'impalcato in corrispondenza del manufatto regolatore. Sono inoltre esposti i calcoli per il dimensionamento delle pile.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Infine, nel Capitolo 10 sono riportate le procedure per il dimensionamento delle paratoie.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

2 Normativa di riferimento

Il dimensionamento e la verifica delle strutture sono stati condotti in conformità alla normativa nazionale vigente, ed in particolare, nel rispetto delle disposizioni dei seguenti testi:

- Norme tecniche per le costruzioni D.M. 17/01/2018 (di seguito "NTC 2018");
- Circolare esplicativa 11/02/2019 contenente le Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" (di seguito "Circolare");
- D. Min. Infrastrutture e Trasp. 26/06/2014 Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse) (di seguito D.M. 26/06/2014);
- Circolare della Presidenza del Consiglio dei Ministri n° DSTN/2/7311 (di seguito CPM DSTN/2/7311);
- Norma UNI EN 206-1:2006 "Linee guida sul calcestruzzo strutturale";
- Norma UNI EN 1992-1-:2015 "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole per gli edifici" (di seguito "EC2");
- Norma UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produttività e conformità Specificazioni complementari per l'applicazione della EN 206".
- Allegati A e B al D.M. 14/02/2008 (di seguito "All. A e B NTC 2008");
- DIN 19704 Hydraulic steel structures Part. 1: Criteria for design and calculation;

NOTA:

Le traverse fluviali con funzione di regolazione possono essere assimilate a dighe, applicando di conseguenza la medesima normativa di riferimento valida per queste ultime; nella fattispecie le verifiche sono state condotte in accordo alle indicazioni del DM 26.06.2014, oltre che a quelle delle NTC 2018.

La circolare PCM DSTN/2/7311 chiarisce come non siano dighe, invece, le opere di sfioro delle casse di espansione in derivazione "intese come aree opportunamente arginate per consentire l'accumulo temporaneo di acqua in occasione di eventi di piena mediante sfioro di una soglia libera o regolabile inserita in un tratto di sponda del corso d'acqua, oppure mediante altri sistemi quali sifoni auto innescanti o tratti

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

di argine fusibili", giacché non si tratta di opere che sbarrano un corso d'acqua e ne intercettano i deflussi.

Tuttavia per semplicità e cautela anche le verifiche del manufatto di derivazione laterale sono state condotte adottando i medesimi criteri normativi di verifica delle dighe, come per il manufatto regolatore.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

3 Modellazione in SAP2000

3.1 Sintesi funzionalità generali

I primi software della serie SAP per l'analisi di strutture con il metodo agli elementi finiti hanno fatto la loro comparsa sul finire degli anni cinquanta sviluppati da un gruppo dell'università di Berkeley specializzato nelle strutture tipo civile e capeggiato dai professori Wilson e Bathe.

SAP2000 è un codice che permette di risolvere strutture spaziali con il metodo delle deformazioni.

In questa analisi si suppone che la struttura sia composta da elementi semplici compresi tra nodi. Ogni elemento può essere soggetto a spostamenti longitudinali, trasversali e rotazionali. A tali spostamenti corrispondono forze e momenti necessari per mantenere la struttura in tale condizione.

Tale metodo può essere applicato a strutture composte da ogni tipo di elemento e non è limitativo quanto a forma o particolari materiali. Non è necessario che le caratteristiche degli elementi restino costanti tra i nodi.

La modellazione della struttura è realizzata tramite elementi Frame (travi e pilastri) e Shell (platee, pareti, solette).

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.

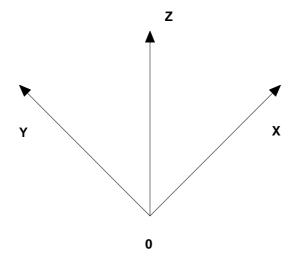
L'utente esegue delle scelte come:

- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- definire condizioni di carico;
- definire gli impalcati come rigidi o meno.

Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

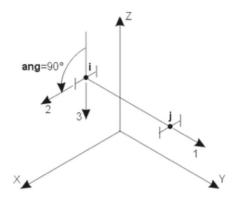
Il comportamento del terreno è sostanzialmente rappresentato tramite una schematizzazione lineare alla Winkler, principalmente caratterizzabile attraverso una opportuna costante di sottofondo, che può essere anche variata nella superficie di contatto fra struttura e terreno e quindi essere in grado di descrivere anche situazioni più complesse.

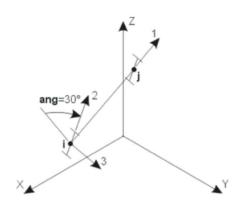


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

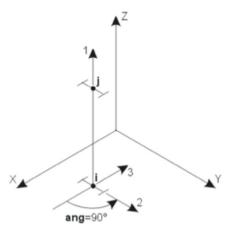
3.2 Sistemi di riferimento globale

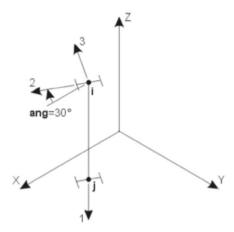
Il sistema di riferimento globale è costituito da un sistema a tre coordinate cartesiane destrorso. I tre assi del sistema sono denominati X, Y, Z e sono tra loro perpendicolari. SAP2000 considera sempre come +Z l'asse verticale ascendente. Per default, la gravità è diretta secondo la direzione Z.




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

3.3 Sistemi di riferimento locale per elementi Frame (travi, pilastri)


Ciascun elemento frame ha il proprio sistema di coordinate locale, con assi denominati 1, 2, 3. L'asse locale 1 è sempre l'asse longitudinale dell'elemento con la direzione positiva diretta dall'estremo I all'estremo J. Le direzioni 2 e 3 sono parallele agli assi neutri della sezione. Di solito la direzione 2 è presa lungo la direzione maggiore (altezza) della sezione, mentre la direzione 3 lungo la sua dimensione minore (larghezza).


L'asse locale 1 è parallelo all'asse +Y L'asse locale 2 è ruotato di 90° dal piano Z-1

L'asse locale 1 non è parallelo agli assi X, Y o Z L'asse locale 2 è ruotato di 30° dal piano Z-1

L'asse locale 1 è parallelo all'asse +Z L'asse locale 2 è ruotato di 90° dal piano X-1

L'asse locale 1 è parallelo all'asse -Z L'asse locale 2 è ruotato di 30° dal piano X-1

Le sollecitazioni verranno fornite in attinenza a tale sistema di riferimento:

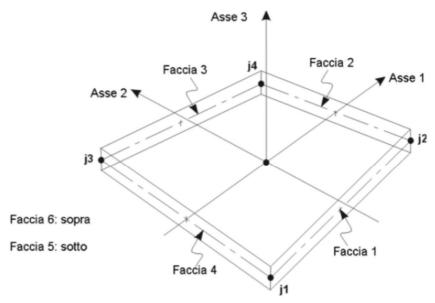
Mandanti:

MAJONE&PARTNERS

ENGINEERING



- P, la forza assiale,
- V2, la forza di taglio nel piano 1-2
- V3, la forza di taglio nel piano 1-3
- T, momento torcente
- M2, il momento flettente nel piano 1-3 (intorno all'asse 2)
- M3, il momento flettente nel piano 1-2 (intorno all'asse 3)



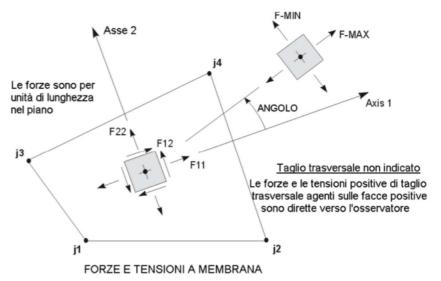
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

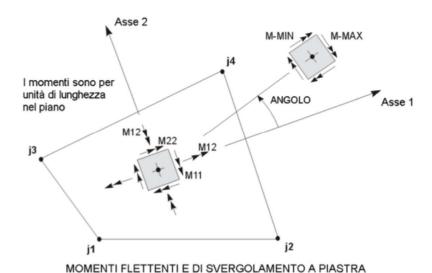
3.4 Sistemi di riferimento locale per elementi Shell (solette, pareti, platee)

L'elemento Shell ha una formulazione a tre o quattro nodi che combina il comportamento separato a membrana e quello a piastra flettente. Il comportamento a membrana usa una formulazione isoparametrica che comprende le componenti di rigidezza traslazionali nel piano e una componente di rigidezza rotazionale nella direzione normale al piano dell'elemento. Il comportamento a piastra flettente comprende due componenti di rigidezza rotazionali della piastra, fuori dal piano e una componente di rigidezza traslazionale nella direzione normale al piano dell'elemento. Per default viene utilizzata una formulazione a piastra spessa che comprende gli effetti della deformazione di taglio trasversale.

Elemento Shell quadrilatero a quattro nodi

Ciascun elemento Shell ha un proprio sistema di coordinate locale usato per definire le proprietà del materiale, i carichi e l'output. Gli assi di questo sistema locale sono indicati con i numeri 1, 2. 3. I primi due assi giacciono nel piano dell'elemento con orientamento specificato dall'utente; il terzo asse è normale.





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

La tensione Sij ha la stessa definizione della forza Fij

Le sollecitazioni verranno fornite in attinenza a tale sistema di riferimento:

- Tensioni assiali nel piano: S11 e S22
- Tensione di taglio nel piano: S12
- Tensioni di taglio trasversali: S13 e S23
- Tensione assiale normale al piano: S33 (considerata sempre nulla)

Le tre tensioni nel piano sono assunte costanti o variabili linearmente entro lo spessore dell'elemento. Le due tensioni di taglio trasversali sono considerate costanti lungo lo spessore. La vera distribuzione della tensione di taglio è parabolica, con valore nullo

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

sulle superficie in alto e in basso e con valore massimo o minimo alla superficie mediana dell'elemento.

Le forze interne dell'elemento Shell, chiamate anche risultanti delle tensioni, sono le forze ed i momenti che risultano dall'integrazione delle tensioni sullo spessore dell'elemento:

Forze membranali assiali: F11 e F22

Forza membranale di taglio: F12

Momenti flettenti a piastra: M11 e M22

Momento di svergolamento a piastra: M12

Forze di taglio trasversali a piastra: V13 e V23

E' molto importante notare che queste risultanti della tensione sono forze e momenti per unità di lunghezza nel piano. Sono presenti in ciascun punto sulla superficie mediana dell'elemento.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

3.5 Casi di carico

I carichi (Loads) rappresentano le azioni agenti sulla struttura, come forze, pressioni, cedimenti vincolari, effetti termici, accelerazione al terreno e altro. Una distribuzione spaziale di questi carichi è chiamata condizione di carico (Load Case).

Una condizione di carico rappresenta, in definitiva, un carico elementare; di seguito riportiamo i tipi previsti:

- DEAD: carico permanente (G1)
- SUPER DEAD: carico permanente (G2)
- LIVE, REDUCED LIVE: carichi accidentali (Q)
- QUAKE: azioni simiche (E)
- WIND: azioni dovute al vento (Q)
- SNOW: carico neve (Q)
- WAVE: carichi determinati da onde di pressione (Q)
- OTHER: altri tipi di carico

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

3.6 Casi di analisi in condizioni statiche

Per l'analisi strutturale, volta alla valutazione degli effetti delle azioni, si possono adottare i seguenti metodi:

- a) Analisi elastica lineare;
- b) Analisi plastica;
- c) Analisi non lineare.

Analisi elastica lineare

Per la determinazione degli effetti delle azioni, sia per lo stato limite ultimo che di esercizio, le analisi sono effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate riferendosi al solo cls;
- relazioni tensioni deformazione lineare;
- valori medi del modulo di elasticità.

Analisi plastica

Al materiale si attribuisce un diagramma delle tensioni-deformazioni rigido-plastico verificando che la duttilità delle sezioni dove si localizzano le plasticizzazioni sia sufficiente a garantire la formazione del meccanismo di collasso previsto.

Nell'analisi si trascurano gli effetti di precedenti applicazioni del carico e si assume un incremento monotono dell'intensità delle azioni e la costanza del rapporto tra le loro intensità così da pervenire ad un unico moltiplicatore di collasso.

Analisi non lineare

Al materiale si attribuisce un diagramma tensioni-deformazioni che ne rappresenti adeguatamente il comportamento reale, verificando che le sezioni dove si localizzano le plasticizzazioni siano in grado di sopportare allo stato limite ultimo tutte le deformazioni non elastiche derivanti dall'analisi, tenendo in appropriata considerazione le incertezze.

Nell'analisi si trascurano gli effetti di precedenti applicazioni del carico e si assume un incremento monotono dell'intensità delle azioni e la costanza del rapporto tra le loro intensità.

Le analisi effettuate per le verifiche strutturali delle opere in esame sono di tipo elastico lineare.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

3.7 Casi di analisi in condizioni dinamiche

L'analisi delle strutture soggette ad azione sismica può essere di tipo lineare o non lineare, in relazione alla modellazione del comportamento del materiale.

Inoltre, in funzione del fatto che l'equilibrio sia tratto staticamente o dinamicamente, i metodi di analisi si distinguono ulteriormente in statici o dinamici.

Per le opere in esame si utilizzeranno analisi lineari dinamiche.

Analisi statica equivalente (analisi lineare statica)

L'analisi statica lineare consiste nell'applicazione di forze statiche equivalenti alle forze di inerzia indotte dall'azione sismica e può essere effettuata per costruzioni che rispettino i requisiti specificati nel Cap. 7.3.3.2 delle NTC 2018, a condizione che il periodo del modo di vibrare principale nella direzione in esame (T₁) non superi 2.5T_C o T_D e che la costruzione sia regolare in altezza.

L'entità delle forze si ottiene dall'ordinata dello spettro di progetto corrispondente al periodo T₁ (calcolato in base alla formula 7.3.5, NTC 2018), e la loro distribuzione sulla struttura segue la forma del modo di vibrare principale nella direzione in esame.

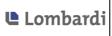
Analisi dinamica modale (analisi lineare dinamica)

Il programma effettua l'analisi dinamica con il metodo dello spettro di risposta. Il sistema da analizzare può essere visto come un oscillatore con n gradi di libertà, di cui vanno individuati i modi propri di vibrazione. Il numero di frequenze da considerare è un dato di ingresso che l'utente deve assegnare. In generale si osservi che il numero di modi propri di vibrazione non può superare il numero di gradi di libertà del sistema.

La procedura attua l'analisi dinamica in due fasi distinte: la prima si occupa di calcolare le frequenze proprie di vibrazione, la seconda calcola spostamenti e sollecitazioni conseguenti allo spettro di risposta assegnato in input.

Nell'analisi spettrale il programma utilizza lo spettro di risposta assegnato in input, coerentemente con quanto previsto dalla normativa. L'eventuale spettro nella direzione globale Z è unitario. L'ampiezza degli spettri di risposta è determinata dai parametri sismici previsti dalla normativa e assegnati in input dall'utente.

La procedura calcola inizialmente i coefficienti di partecipazione modale per ogni direzione del sisma e per ogni frequenza. Tali coefficienti possono essere visti come il



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

contributo dinamico di ogni modo di vibrazione nelle direzioni assegnate. Si potrà perciò notare in quale direzione il singolo modo di vibrazione ha effetti predominanti. Successivamente vengono calcolati, per ogni modo di vibrazione, gli spostamenti e le sollecitazioni relative a ciascuna direzione dinamica attivata, per ogni modo di vibrazione. Per ogni direzione dinamica viene calcolato l'effetto globale, dovuto ai singoli modi di vibrazione, mediante la radice quadrata della somma dei quadrati dei singoli effetti. E' prevista una specifica fase di stampa per tali risultati. L'ultima elaborazione riguarda il calcolo degli effetti complessivi, ottenuti considerando tutte le direzioni dinamiche applicate.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

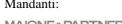
Scelta del copriferro

In accordo con la normativa, il copriferro da utilizzare nei calcoli strutturali e da riportare negli elaborati grafici si definisce come copriferro nominale c_{NOM} ed è definito come segue [EC2].

$$c_{NOM} = c_{min} + \Delta c_{dev}$$

dove:

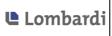
- c_{min} è il valore del copriferro minimo;
- Δc_{dev} è la tolleranza di esecuzione relativa al copriferro.


Lo spessore minimo del copriferro è il valore massimo tra quelli minimi imposti per soddisfare le esigenze di durabilità e di aderenza.

 $c_{min} = max\{c_{min,b}; c_{min,dur} + \Delta c_{dur,v} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 mm\} = 30 mm$ (35 mm nel caso in cui non sia previsto un controllo di qualità speciale della produzione) dove:

- $c_{min,b}$ è il copriferro minimo necessario per l'aderenza delle armature ed è pari al diametro della barra, ovvero max 20 mm nei casi in analisi;
- $c_{min.dur}$ è il copriferro minimo necessario per la durabilità dell'opera, pari a 35 mm (ma con un controllo di qualità speciale della produzione può essere ridotto a 30 mm) considerando la classe di esposizione (XC2) e la vita nominale dei manufatti, che per grandi dighe rilevanti è pari a 100 anni in accordo con la normativa [D.M. 26/06/2014, Tab. C.2];
- $\Delta c_{dur,\gamma}$ è il valore aggiuntivo del copriferro legato alla sicurezza (nel draft dell'appendice nazionale dell'Italia si consiglia di porre tale valore pari a zero);
- $\Delta c_{dur,st}$ è la riduzione del copriferro quando si utilizza acciaio inossidabile (nel draft dell'appendice nazionale dell'Italia si consiglia di porre tale valore pari a zero);
- $\Delta c_{dur,add}$ è la riduzione del copriferro minimo quando si ricorre a protezioni aggiuntive (nel draft dell'appendice nazionale dell'Italia si consiglia di porre tale valore pari a zero).

Il draft dell'Appendice nazionale Italiana per la norma UNI EN 1992-1-1 consiglia di fissare la tolleranza $\Delta c_{dev} = 10 \ mm$, dunque:


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

$$\Delta c_{dev} = \begin{cases} 30 \; mm + 10 \; mm = 40 \; mm \; \; (con \; controllo \; produzione) \\ 35 \; mm + 10 \; mm = 45 \; mm \; \; (senza \; controllo \; produzione) \end{cases}$$

Tuttavia, qualora si prevedano controlli di qualità dei copriferri in cantiere $\Delta c_{dev} =$ $5 \div 10 \ mm$ e nel caso in cui tali controlli siano estremamente efficienti $\Delta c_{dev} = 0 \div$ 10 mm. Pertanto $c_{NOM} = 30 \div 45$ mm in base ai controlli che si prevedono. Nella fattispecie il valore selezionato per il copriferro nominale è $c_{NOM}=30\ mm$.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5 Sbarramento esistente

5.1 Descrizione delle opere

L'intervento riguarderà la parziale demolizione della sezione centrale della traversa esistente comprendente due delle 4 luci di fondo esistenti. La porzione di manufatto esistente "scapitozzata" fino a quota 39.75 m s.l.m. per un tratto di lunghezza di 44.60 m andrà a costituire la soglia della sezione terminale della vasca di dissipazione del nuovo corpo di regolazione dello sbarramento.

Le due luci di fondo laterali al di fuori del tratto interessato dalla parziale demolizione verranno chiuse tramite panconi metallici estraibili. La soglia sfiorante nei tratti laterali non interessati dalla demolizione rimarrà funzionale alla quota attuale pari a 46.25 m slm, per uno sviluppo complessivo di 96 metri.

Si prevede la realizzazione del ponte di servizio che si svilupperà sopra le soglie sfioranti del manufatto unendo di fatto sponda destra e sinistra del Secchia. Le pile a sostegno dell'impalcato si innesteranno sul corpo traversa esistente.

L'impalcato carrabile sarà composto da una soletta in c.a. di spessore 20 cm pavimentata con pacchetto stradale così composto: strato di 7 cm di binder compatto più 3 cm di tappeto di usura; la pavimentazione è contenuta entro cordoli lato strada di altezza 20 cm su cui verrà installato il guard-rail classe H2 bordo ponte. La larghezza corrente lorda dell'impalcato sarà pari a 6.40 metri.

La quota piano strada del ponte di servizio sarà pari a 52,70 m slm e la quota intradosso sarà pari a 51.60 m slm. L'impalcato verrà realizzato con travi prefabbricate precompresse, appoggiate su pulvini, sorretti da pile di sostegno delle dimensione 3.0 x 1.0 metri, collocate ad interasse di 23.50 m.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.2 Disegni di riferimento

Gli elaborati grafici relativi alle opere in analisi sono elencati nella tabella seguente.

Codice tavola	Titolo tavola					
Tav. A.1	Intervento A: Adeguamento del manufatto di sbarramento e	1:500				
	regolazione dell'invaso: Planimetria di progetto					
	Intervento A: Adeguamento del manufatto di sbarramento e					
Tav. A.2	regolazione dell'invaso: Stato di fatto e demolizioni (pianta e	1:200				
	sezioni)					
	Intervento A: Adeguamento del manufatto di sbarramento e					
Tav. A.3	regolazione dell'invaso: Pianta a quota 56.20 m s.l.m.	1:200				
	(Copertura)					
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	1:200				
A.4.1	regolazione dell'invaso: Sezioni da A-A a C-C	1.200				
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	1:200				
A.4.2	regolazione dell'invaso: Sezioni da D-A a H-H					
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e					
A.5.1	regolazione dell'invaso: Pianta a quota 52.60 m s.l.m.					
A.J.1	(Impalcato ponte di servizio)					
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e					
A.5.2	regolazione dell'invaso: Pianta a quota 50.30 m s.l.m.					
A.J.2	(scarico di superficie)					
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e					
A.5.3.1	regolazione dell'invaso: Pianta a quota 46.75 m s.l.m. (Muri	1:200				
A.J.3.1	manufatto di regolazione)					
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e					
A.5.3.2	regolazione dell'invaso: Muri del manufatto di sbarramento in					
A.3.3.2	e regolazione					
L	I	1				

Intervento A: Adeguamento del manufatto di sbarramento e			
regolazione dell'invaso: Muri di sponda, viste e sezioni			
Intervento A: Adeguamento del manufatto di sbarramento e			
regolazione dell'invaso: Pianta a quota 38.00 m s.l.m. (Piano	1:200		
fondazione)			
Intervento A: Adeguamento del manufatto di sbarramento e			
regolazione dell'invaso: Pianta a quota 35.25 m s.l.m. (Piano			
di bonifica e diaframmi)			
Intervento A: Adeguamento del manufatto di sbarramento e			
regolazione dell'invaso: Organi di manovra: paratoia	indicata		
Intervento A: Adeguamento del manufatto di sbarramento e			
regolazione dell'invaso: Interventi sul manufatto esistente:			
collegamenti con strutture in progetto ed interventi sulle			
luci esistenti			
	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 38.00 m s.l.m. (Piano fondazione) Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 35.25 m s.l.m. (Piano di bonifica e diaframmi) Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Organi di manovra: paratoia Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Interventi sul manufatto esistente: collegamenti con strutture in progetto ed interventi sulle		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.3 Caratteristiche dei materiali strutturali

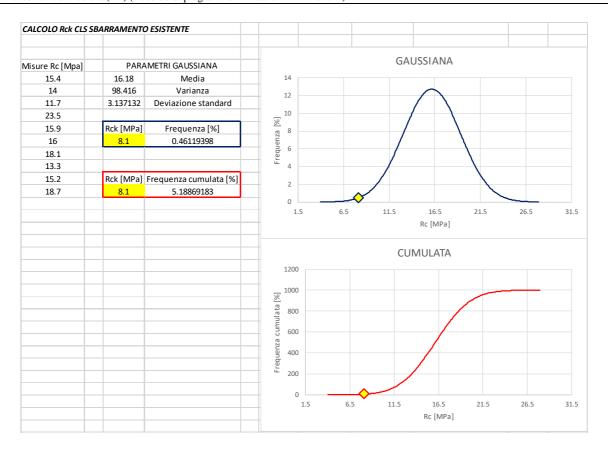
5.3.1 Calcestruzzo costituente lo sbarramento esistente

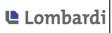
Le caratteristiche meccaniche del calcestruzzo costituente lo sbarramento esistente sono state investigate mediante prove di laboratorio effettuate su materiale prelevato in sito tramite carotaggio.; i risultati sono riportati di seguito.

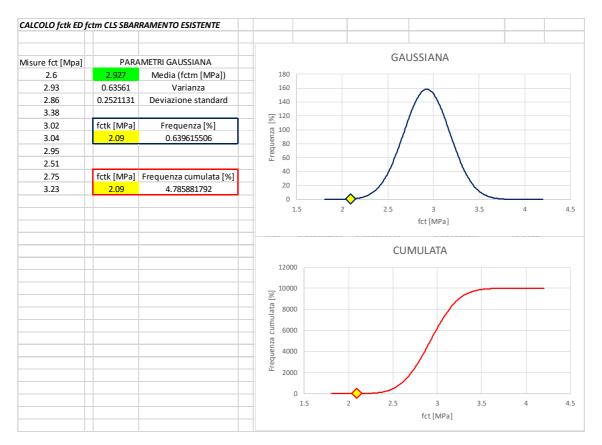
PROVA DI COMPRESSIONE SU PROVINI DI CALCESTRUZZO									
		Dim	ensioni Pro	vino	Massa	Carico di	f _{Cλ}	R _{C1}	CO2
Parte d'opera	ID	Diametro	Lunghezza	λ = L / D	volumica	Rottura	·CX	IXC1	CO2
		[mm]	[mm]	Λ- L/D	[kg/mc]	[kN]	[MPa]	[MPa]	[mm]
C1 - 1,20/1,29 m	C1	87	89	1,02	2221	90,80	15,3	15,4	21
C2-A - 0,27/0,36 m	C2	87	86	0,99	2259	83,70	14,1	14,0	T=11; F=56
C2-B - 3,04/3,13 m	C3	87	87	1,00	2214	69,60	11,7	11,7	T=11; F=56
C3 - 0,30/0,89 m	C4	87	86	0,99	2269	140,30	23,6	23,5	17
C4-A - 0,30/0,39 m	C5	87	84	0,97	2283	95,70	16,1	15,9	T=52; F=36
C4-B - 0,60/0,69 m	C6	87	87	1,00	2233	95,30	16,0	16,0	T=52; F=36
C5 - 0,30/0,39 m	C7	87	85	0,98	2296	108,50	18,3	18,1	13
C7 - 0,33/0,42 m	C8	87	86	0,99	2259	79,40	13,4	13,3	12
C8-A - 0,57/0,66 m	C9	87	87	1,00	2224	90,20	15,2	15,2	T=24; F=36
C8-B - 0,11/0,20 m	C10	87	84	0,97	2293	112,50	18,9	18,7	T=24; F=36

PROVA DI TRAZIONE INDIRETTA SU PROVINI DI CALCESTRUZZO UNI EN 12390-6:2010									
progressivo	ID	Dimensioni Provino Diametro Lunghezza			Massa volumica	Carico di Rottura	f _{ct}		
prova		[mm]	[mm]	$\lambda = L / D$	[kg/mc]	[kN]	[MPa]		
C1 - 1,40/1,49 m	C1	87	92	1,06	2223	32,63	2,60		
C2-A - 0,36/0,45 m	C2-A	87	92	1,06	2251	36,88	2,93		
C2-B - 3,13/3,22 m	C2-B	87	92	1,06	2238	35,94	2,86		
C3 - 0,39/0,48 m	C3	87	89	1,02	2217	41,13	3,38		
C4-A - 0,39/0,48 m	C4-A	87	86	0,99	2277	35,51	3,02		
C4-B - 0,69/0,78 m	C4-B	87	88	1,01	2189	36,59	3,04		
C5 - 0,39/0,48 m	C5	87	88	1,01	2292	35,44	2,95		
C7 - 0,42/0,49 m	C7	87	87	1,00	2231	29,80	2,51		
C8-A 0,66/0,75 m	C8-A	87	91	1,05	2233	34,21	2,75		
C8-B - 0,20/0,29 m	C8-B	87	87	1,00	2280	38,39	3,23		

I valori caratteristici della resistenza a compressione su cubi (R_{ck}) e della resistenza a trazione (f_{ctk}) sono stati calcolati previo tracciamento delle distribuzioni gaussiane, considerando che corrispondono al frattile 5%. Si riportano di seguito estratti dei fogli di calcolo.







MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 7 MPa$$

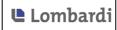
 $f_{cm} = f_{ck} + 8 MPa = 15 MPa$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \cong 4 MPa$$

dove:

- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.


La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.3.2 Calcestruzzo strutturale di classe C25/30

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da armare) impiegato per la realizzazione delle pile dell'impalcato in progetto è pari a 30 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 25 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 33 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 – Par 11.2.10.2]:

$$f_{ctm} = 0.30 \cdot f_{ck}^{\frac{2}{3}} \cong 2.5 \, MPa$$

$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \cong 14 MPa$$

dove:

- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

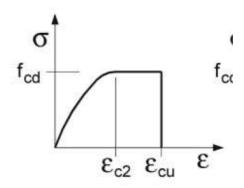
La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 31500 \, MPa$$

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.3.3 Acciaio per cemento armato tipo B450C

L'acciaio per calcestruzzo armato B450C è caratterizzato dai seguenti valori nominali della tensione di snervamento $f_{y,nom}$ e della tensione a carico massimo $f_{t,nom}$ da utilizzare nei calcoli [NTC 2018 – Par. 11.3.2.1]:

$$f_{v,nom} = 450 MPa$$

$$f_{t,nom} = 540 MPa$$

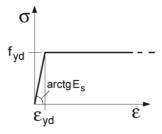
Tra i requisiti richiesti da normativa [NTC 2018 – Tab. 11.3.Ib] sono specificati i due vincoli seguenti in merito ai valori caratteristici delle tensioni.

$$f_{v,k} \ge f_{v,nom}$$

$$f_{t,k} \ge f_{t,nom}$$

Pertanto i valori considerati per le tensioni caratteristiche sono i seguenti:

$$f_{v,k} = f_{v,nom} = 450 MPa$$


$$f_{t,k} = f_{t,nom} = 540 MPa$$

La resistenza di progetto dell'acciaio $f_{v,d}$ è riferita alla tensione di snervamento ed il suo valore si ottiene come segue [NTC 2018 – Par. 4.1.2.1.1.2]:

$$f_{y,d} = \frac{f_{y,k}}{\gamma_s} \cong 391.3 MPa$$

essendo $\gamma_s=1.15$ il coefficiente parziale di sicurezza relativo all'acciaio.

Il diagramma di progetto tensione-deformazione dell'acciaio è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.2]. In particolare si è considerato un modello $\sigma - \varepsilon$ di elastico perfettamente plastico.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.4 Valutazione dell'azione sismica

La valutazione degli effetti riconducibili al sisma è stata condotta mediante un'analisi lineare pseudo-statica, cioè in sostanza l'azione sismica è stata rappresentata applicando forze statiche equivalenti.

Le forze inerziali degli elementi di progetto (strutturali e non) oppure riconducibili alla presenza di terreno o di carichi variabili sono state ottenute come prodotto delle forze di gravità per un opportuno coefficiente sismico orizzontale k_h , definito in normativa [NTC 2018 – Par. 7.11.6.2.1].

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

dove:

- β_m è il coefficiente di riduzione dell'accelerazione sismica;
- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- *g* è l'accelerazione di gravità.

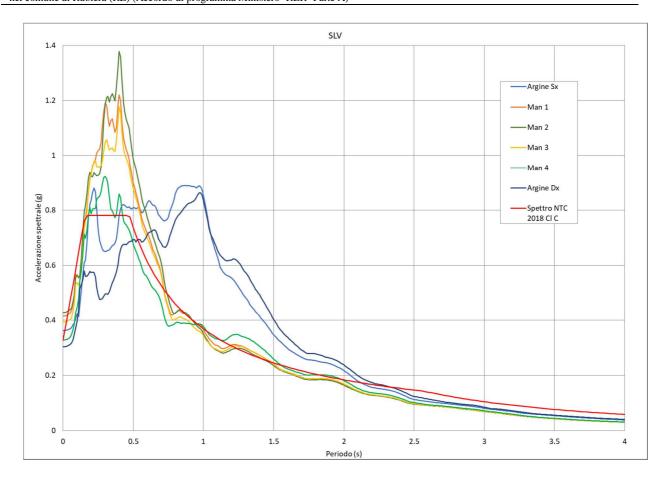
Il valore del coefficiente β_m è stato assunto unitario.

E' stato analizzato il solo Stato Limite di Vita (SLV), infatti:

- da normativa [NTC 2018 Tab. 7.3.III.], per CU III le verifiche SLD sono verifiche di resistenza, proprio come quelle SLV;
- avendo assunto $\beta_m = 1$, SLV risulta sicuramente più gravoso di SLD.

La risposta sismica è stata caratterizzata a livello locale tramite modellazione bidimensionale effettuata sulla base di una sezione litostratimetrica ricavata a partire da sondaggi effettuati in corrispondenza del manufatto regolatore.

Gli spettri elastici rappresentativi della risposta sismica locale SLV sono mostrati nel seguente grafico, in cui è riportato anche lo spettro definito da NTC.





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.5 Definizione dei carichi e delle loro combinazioni

Oltre al peso proprio dello sbarramento e degli elementi portanti dell'impalcato (automaticamente calcolato dal software SAP2000), sono stati considerati i seguenti carichi:

> PESO PROPRIO DELLA SOLETTA IN C.A.

E' stato considerato applicando ad ogni trave da ponte il carico uniformemente distribuito $p_{soletta}$ definito come segue:

$$p_{soletta} = s \cdot B \cdot c = 6 \, kN/m$$

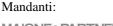
dove:

- s = 0.2 m è lo spessore della soletta;
- B = 1.2 m è la larghezza della porzione di soletta pertinente a ciascuna
- $c = 25 \, kN/m^3$ è il peso per unità di volume del calcestruzzo armato secondo normativa [NTC 2018 – Tab. 3.1.I].

> PESO PROPRIO MANTO STRADALE

E' stato considerato applicando ad ogni trave da ponte il carico uniformemente distribuito $p_{manto\ stradale}$ definito come segue:

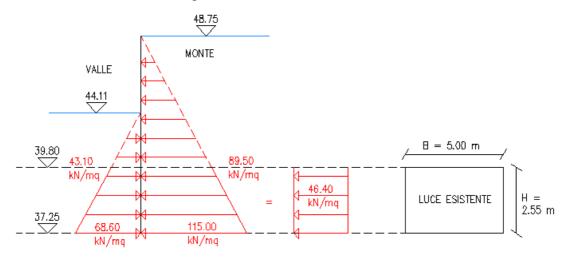
$$p_{manto_stradale} = s \cdot B \cdot c \cong 2 \ kN/m$$


dove:

- s = 0.13 m è lo spessore del manto stradale;
- B = 1.2 m è la larghezza della porzione di manto stradale pertinente a ciascuna trave;
- $c = 13 \, kN/m^3$ è il peso per unità di volume del bitume.

> PESO PROPRIO GUARDRAIL

La presenza del guardrail è stata considerata applicando un carico uniformemente distribuito $p_{quardrail} = 0.4 \, kN/m$ (conservativo) lungo le travi esterne dell'impalcato.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

> SPINTE DELL'ACQUA

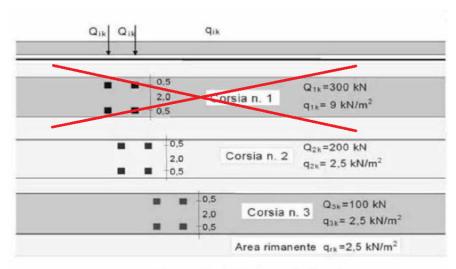
Tali spinte sono state calcolate con riferimento ai livelli d'acqua previsti nella situazione progettuale di massima regolazione con bocche chiuse, ovvero 48.75 m s.l.m. e 44.11 m s.l.m. rispettivamente a monte e a valle del manufatto. Si specifica che sono state considerate sottospinte idrostatiche, ovvero è stato trascurato il contributo associato ai fenomeni di filtrazione. Ciò in considerazione del fatto che la presenza dei diaframmi plastici comporta un notevole incremento del percorso di filtrazione (che avviene peraltro in un terreno caratterizzato da bassa permeabilità), con conseguente abbattimento delle pressioni in eccesso.

La presenza del sistema di chiusura controllata delle luci esistenti è stata considerata applicando sul perimetro di battuta carichi distribuiti valutati in accordo con lo schema seguente.

$$P = 46.40 \frac{kN}{mq} \cdot B \cdot H \cong 592 \, kN$$
$$q = \frac{P}{B + 2 \cdot H} \cong 59 \frac{kN}{m}$$

(da applicare sui lati verticali e su quello superiore del perimetro rettangolare)

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


➤ MEZZI E PERSONE SULL'IMPALCATO

Si specifica innanzitutto che l'impalcato in progetto non è riconducibile ad un ponte stradale, in quanto su di esso si prevede la presenza di una strada privata, con permesso di accesso ai soli mezzi autorizzati, che dovranno peraltro rispettare limitazioni di carico.

Per questa ragione non si è ritenuto necessario considerare in maniera puntuale e sistematica gli schemi di carico definiti dalla normativa [NTC 2018 – Par. 5.2.3.3.3].

Piuttosto, la situazione maggiormente critica è stata valutata con riferimento allo schema di carico 1, ma trascurando la presenza del mezzo che genera un carico di 300 kN per ruota (il transito di veicoli tanto pesanti sull'implacato sarà vietato e impedito).

In definitiva è stata considerata la presenza di due veicoli parzialmente affiancati, con assi posteriori allineati in corrispondenza della mezzaria delle travi. Lo schema è quello riportato di seguito.

Schema di carico 1 (dimensioni in [m])

La distanza tra l'asse anteriore e quello posteriore è assunta pari a 7 m per entrambi i veicoli. Il carico distribuito è applicato su ogni trave tenendo conto che ognuna ha una larghezza di pertinenza B pari a 1.2 m.

$$q_{k,trave} = q_k \cdot B = 3 \ kN/m^2$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

FORZE INERZIALI DOVUTE AL SISMA

In via conservativa, l'accelerazione orizzontale massima attesa al sito (a_{max}) è stata assunta calcolando la media dei massimi valori di accelerazione spettrale (S_e) ottenuti a partire dai sondaggi effettuati in corrispondenza del manufatto.

$$S_e \cong 1.18 \cdot 9.81 \ m/s^2 \cong 11.6 \ m/s^2$$

$$S_{e.max} = a_{max} \cdot F_o$$

 F_o è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale ed è pari a circa 2.4 allo SLV per il sito selezionato [All. A e B NTC 2008].

Pertanto:

$$11.6 m/s^2 = a_{max} \cdot 2.4 \Longrightarrow a_{max} \cong 4.9 m/s^2$$

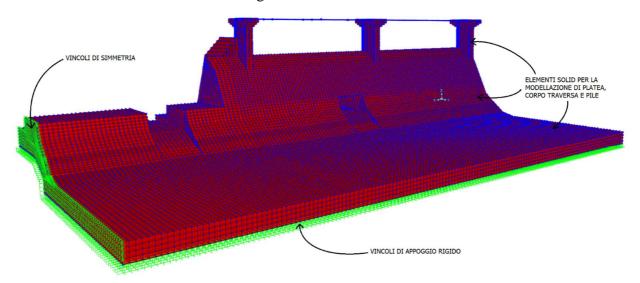
In definitiva, il valore del coefficiente sismico orizzontale k_h è assunto pari a 0.49.

Sono state considerate le combinazioni di carico e le situazioni progettuali maggiormente conservative. I coefficienti di combinazione, riportati nella tabella seguente, sono stati definiti in accordo con la normativa [NTC 2018 – Par. 2.5, Par. 5.1.3.14, D.M. 26/06/2014 – Cap. C.8.].


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

COMBINAZIONI	SITUAZIONE PROGETTUALE	PESO PROPRIO	SPINTE ACQUA	AZIONI VARIABILI CONCENTRATE SULL'IMPALCATO	AZIONI VARIABILI DISTIBUITE SULL'IMPALCATO	SISMA
SLU FONDAMENTALE	Massima regolazione con bocche chiuse	1.3	1.3	1.35	1.35	-
SLE RARA	Massima regolazione con bocche chiuse	1	1	1	1	-
SLE FREQUENTE	Massima regolazione con bocche chiuse	1	1	0.75	0.4	-
SLE QUASI PERMANENTE	Massima regolazione con bocche chiuse	1	1	-	-	-
SISMICA SLV	No acqua	1	-	-	-	1

Gli effetti dell'evento sismico sono stati ottenuti considerando l'inviluppo degli effetti dovuti ad accelerazioni caratterizzate da versi opposti [NTC 2018 – Par. 7.3.5.].



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.6 Modellazione e risultati dell'analisi

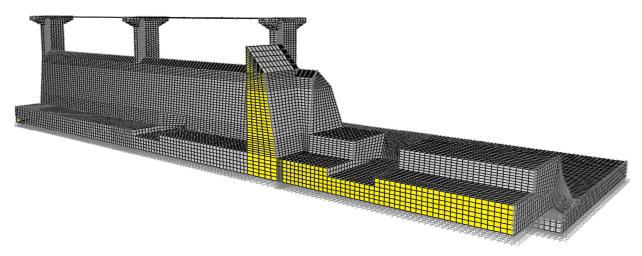
Il manufatto è stato modellato come segue.

Viste le caratteristiche del manufatto, si è ritenuto che il modello dovesse essere concepito sulla base di elementi tridimensionali, detti "solid", che consentono tra le altre cose uno studio approfondito e sistematico dello stato di sforzo all'interno della struttura.

Peraltro, l'impiego di elementi tridimensionali consente di realizzare modelli che riproducono il più fedelmente possibile le caratteristiche geometriche dei manufatti in analisi, nonché le condizioni di carico cui sono soggetti e i vincoli ad essi applicati: ciò chiaramente si traduce in un incremento del grado di accuratezza ed affidabilità dei risultati generati dall'analisi.

Nello specifico, è risultata di particolare interesse, ai fini di questa progettazione definitiva, la valutazione delle tensioni di trazione nel calcestruzzo: sulla base dei risultati generati dal modello è stato infatti possibile:

- valutare se fosse necessario o meno prevedere la presenza di barre di armatura per garantire la resistenza degli elementi strutturali in progetto;
- verificare la resistenza degli elementi esistenti nella configurazione di progetto, ovvero considerando le nuove condizioni di carico cui si prevede saranno soggetti.



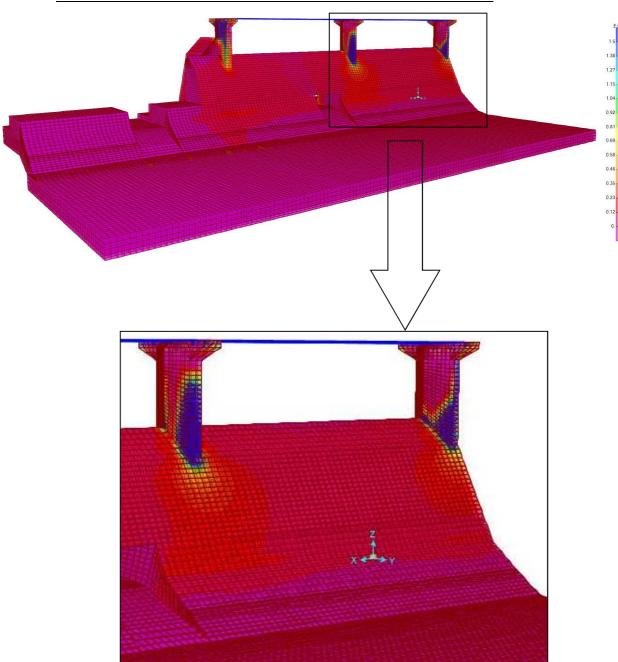
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Vista la simmetria del problema (geometria e carichi simmetrici) è stata modellata esclusivamente una metà del manufatto: vincoli di simmetria sono stati opportunamente predisposti sul piano di sezione.

L'interazione suolo-terreno è stata simulata applicando vincoli di appoggio rigido ai nodi in corrispondenza dell'intradosso della fondazione: questa scelta è stata operata in considerazione della tipologia di terreno di fondazione (essendo argilloso, è ragionevole prevedere che non si verifichino cedimenti differenziali considerevoli) ed è comunque conservativa dal punto di vista strutturale.

Si specifica che non è stato definito alcun vincolo in corrispondenza del giunto strutturale di collegamento al manufatto regolatore in progetto. Questo perché si prevede che il giunto venga dimensionato in maniera tale da non trasmettere alcuna sollecitazione, né in condizioni statiche né in condizioni sismiche. La superficie lungo la quale è prevista l'installazione del giunto strutturale è evidenziata in giallo nella figura seguente.

Nel seguito si riportano i diagrammi maggiormente significativi al fine di valutare l'entità degli sforzi normali di trazione nel calcestruzzo agli SLU e agli SLE.

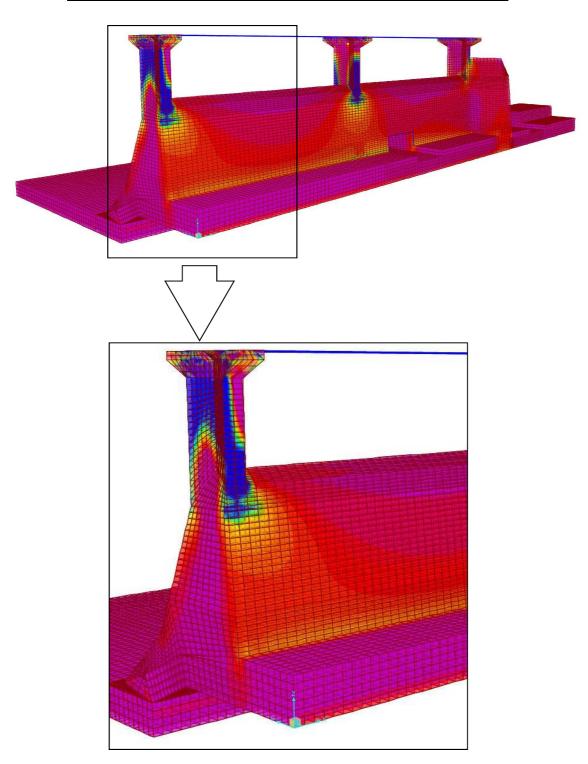


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.6.1 Risultati SLU

Per quanto riguarda gli Stati Limite Ultimi, i valori più elevati delle trazioni nel cls si ottengono considerando gli sforzi normali verticali generati da combinazione SISMICA, riportati di seguito. I valori in legenda sono espressi in kN/m².

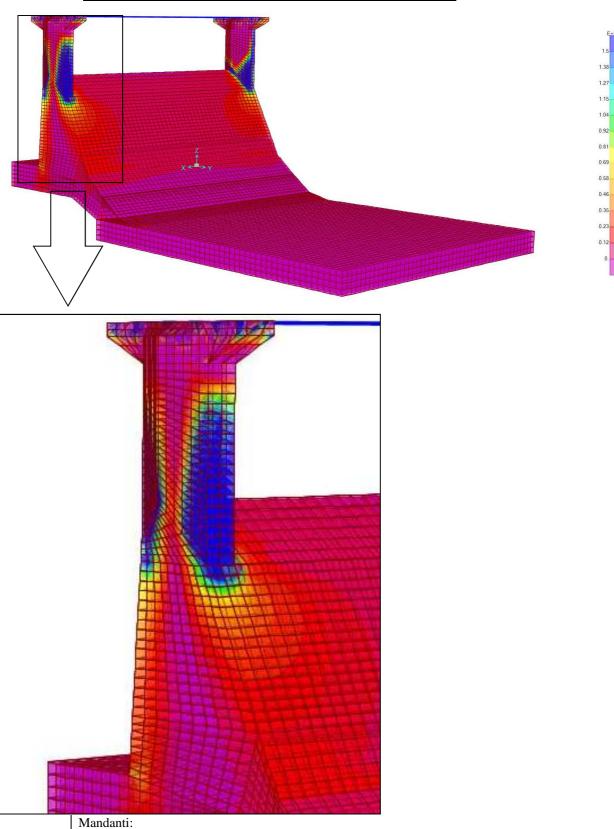
<u>SFORZI S33 – COMBINAZIONE SISMICA - VISTA DA VALLE</u>



0.69

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

SFORZI S33 – COMBINAZIONE SISMICA - VISTA DA MONTE



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

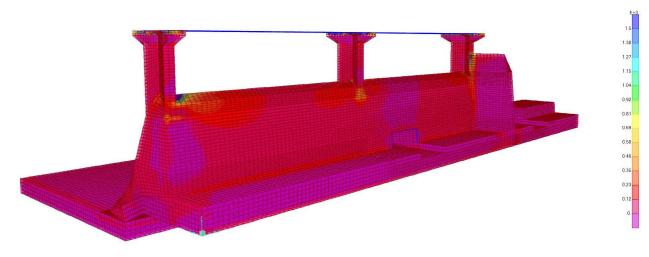
<u>SFORZI S33 – COMBINAZIONE SISMICA - SEZIONE</u>

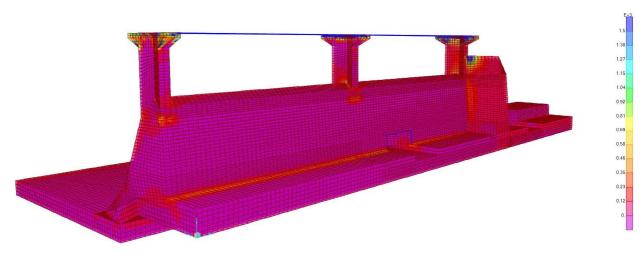
Lombardi ENGEO S GEOI WWW APPORT IT

MAJONE&PARTNERS

DIZETA INGEGNERIA

Mandataria:


Arch. Dal Sasso

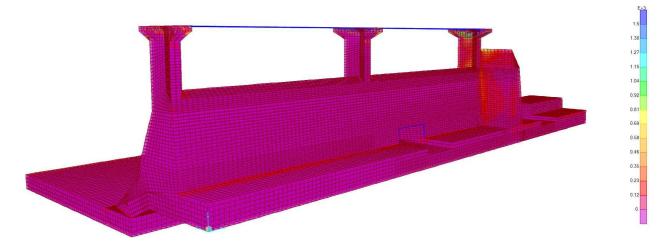

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per completezza si riportano di seguito tutti i diagrammi in vista da monte (nei quali si colgono sforzi maggiori rispetto alla vista da valle o alla sezione) relativi alla combinazione SISMICA e alla combinazione SLU FONDAMENTALE. Si tenga presente che gli sforzi S11 sono quelli normali paralleli all'asse dello sbarramento, mentre gli sforzi S22 sono perpendicolari ad esso.

<u>SFORZI S11 – COMBINAZIONE SISMICA - VISTA DA MONTE</u>

<u>SFORZI S22 – COMBINAZIONE SISMICA - VISTA DA MONTE</u>

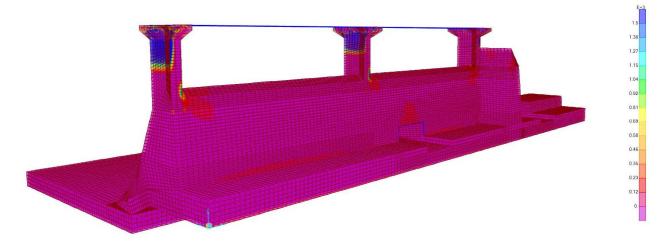




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

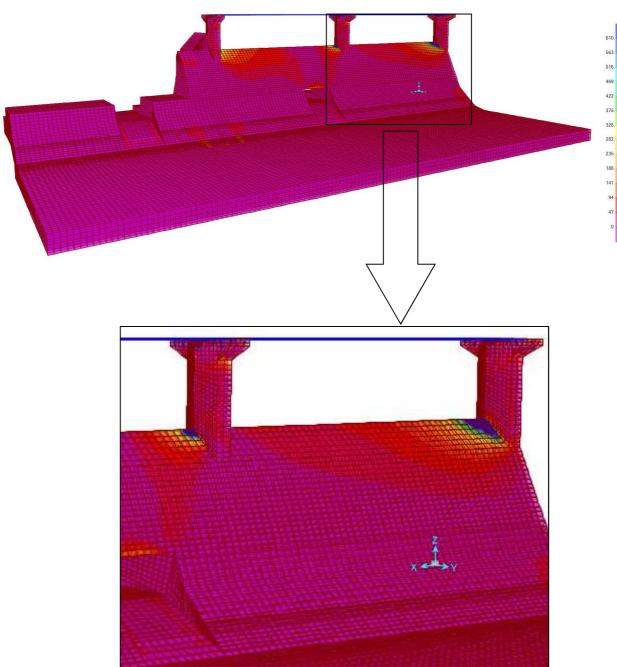
SFORZI S11 – COMBINAZIONE SLU FONDAMENTALE - VISTA DA MONTE

SFORZI S22 – COMBINAZIONE SLU FONDAMENTALE - VISTA DA MONTE



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

<u>SFORZI S22 – COMBINAZIONE SLU FONDAMENTALE - VISTA DA MONTE</u>

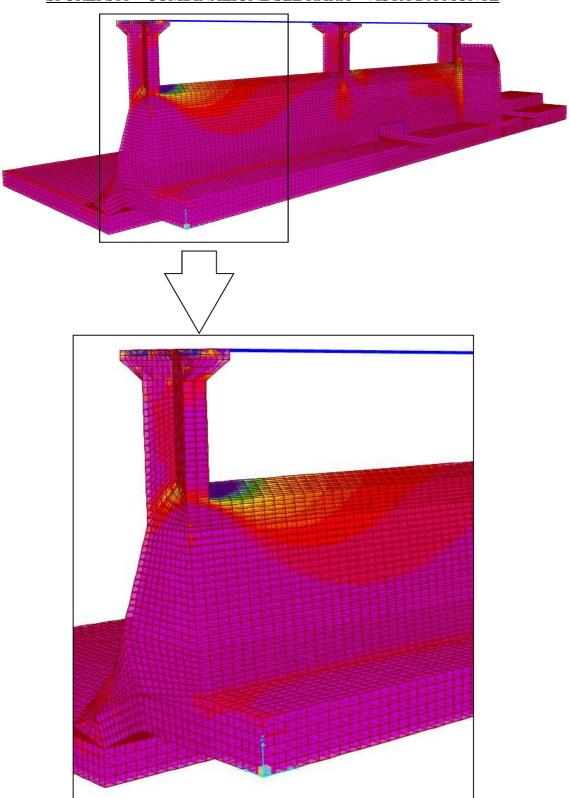


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.6.2 Risultati SLE

Per quanto riguarda gli Stati Limite di Esercizio, i valori più elevati delle trazioni nel cls si ottengono considerando gli sforzi normali S11, riportati di seguito con riferimento alla combinazione RARA.

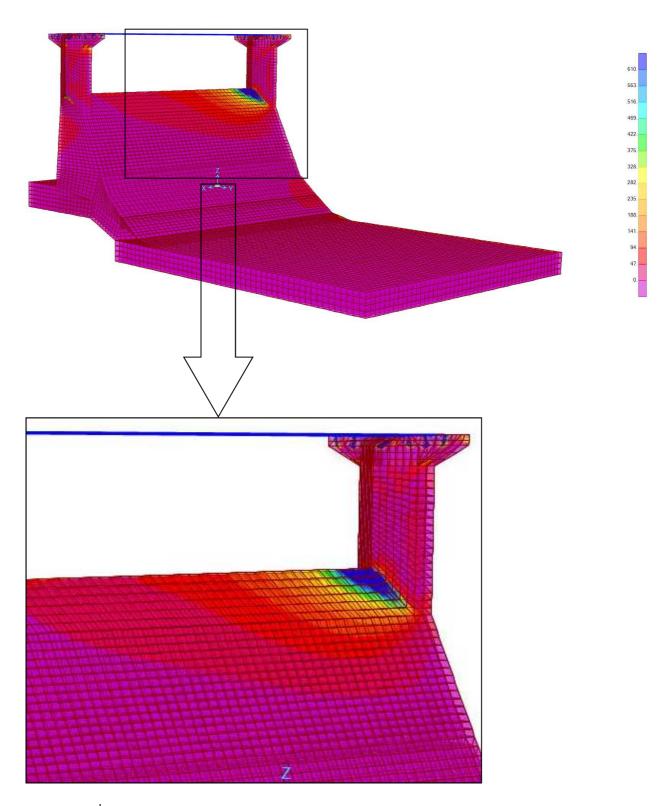
<u>SFORZI S11 – COMBINAZIONE SLE RARA - VISTA DA VALLE</u>



188.

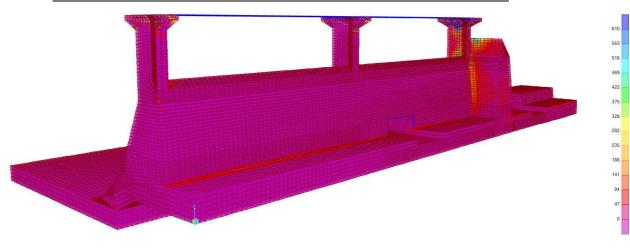
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

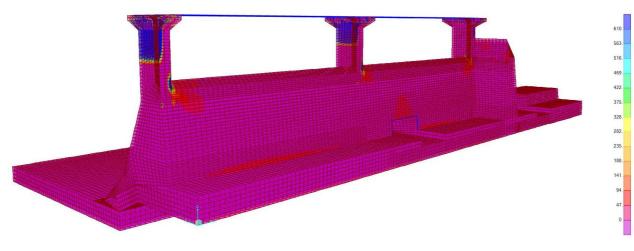
<u>SFORZI S11 – COMBINAZIONE SLE RARA - VISTA DA MONTE</u>



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

<u>SFORZI S11 – COMBINAZIONE SLE RARA - SEZIONE</u>




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per completezza si riportano i restanti diagrammi in vista da monte (nei quali si colgono sforzi maggiori rispetto alla vista da valle o alla sezione) relativi alla combinazione SLE RARA.

SFORZI S22 – COMBINAZIONE SLE RARA – VISTA DA MONTE

<u>SFORZI S33 – COMBINAZIONE SLE RARA – VISTA DA MONTE</u>

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

5.7 Verifiche effettuate

Come si evince, gli sforzi di trazione si attestano in genere su valori di fatto trascurabili: le uniche porzioni in cui raggiungono valori considerevoli (anche ben oltre il limite di resistenza a trazione del calcestruzzo selezionato) sono le pile a sostegno dell'impalcato e le zone immediatamente limitrofe ad esse.

Pertanto chiaramente dovranno essere predisposte armature che garantiscano la resistenza delle pile di nuova realizzazione. Il calcolo dell'area di ferro necessaria per far fronte alle sollecitazioni di progetto è riportato in un apposito capitolo della presente relazione di calcolo interamente dedicato al dimensionamento degli elementi portanti dell'impalcato.

Escludendo le trazioni nelle pile, il valore più elevato agli SLU, pari a 920 kN/m³ (cioè 0.92 MPa) si registra nella porzione inferiore del paramento di monte del corpo traversa, in corrispondenza dell'incastro con la platea di fondazione. Peraltro si riscontrata solo localmente.

Relativamente agli SLE, i limiti massimi delle trazioni sono assunti in coerenza con quanto previsto dalla normativa per le dighe a gravità [D.M. 26/06/2014 – Par. D.2.2.2]:

- COMBINAZIONE SLE RARA $\rightarrow \sigma_t \leq 0.21 \cdot f_{ctm} \cong 0.6 \, MPa$
- COMBINAZIONE SLE QUASI PERMANENTE \rightarrow $\sigma_t = 0$ MPa (stato limite di decompressione)

Come si evince, gli sforzi di trazione agli SLE sono ovunque nulli o prossimi a zero. Considerando la combinazione SLE RARA, i valori limite sono raggiunti solo in porzioni limitate di calcestruzzo, peraltro prossime alle pile da armare.

Alla luce di tali considerazioni, si ritiene che gli elementi esistenti in calcestruzzo siano in grado di garantire la resistenza necessaria per far fronte alle azioni di progetto pur in assenza di barre di armatura.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6 Muro arginale

6.1 Descrizione delle opere

Per il raccordo tra l'impalcato di servizio e le arginature in corrispondenza di entrambe le spalle dello sbarramento esistente è prevista la realizzazione di muri di sponda di sostegno. Tali muri, collocati 6 m a tergo degli esistenti, saranno sagomati secondo la sezione arginale di progetto che, rispetto all'esistente, prevede un rialzo in sommità di circa 2.50 metri fino alla quota di 51.75 m slm. Il raccordo altimetrico tra questa quota e il piano strada dell'impalcato di servizio (52,70 m s.l.m.) verrà realizzato con una rampa in c.a. di lunghezza pari a circa 6,5 m e pendenza 15%. Sotto il piano fondazione dei nuovi muri di sponda è prevista la realizzazione di una diaframmatura in c.a. di spessore pari a 80.00 cm fino alla profondità di 33.70 m s.l.m. La porzione di argine esistente rimanente tra i muri di spalla nuovi ed esistenti il cui coronamento si mantiene pari all'attuale quota di 49.25 m s.l.m. e risulta tracimabile per l'evento di riferimento T200 anni, verrà protetto con un rivestimento in massi regolarizzati.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.2 Disegni di riferimento

Gli elaborati grafici relativi alle opere in analisi sono elencati nella tabella seguente.

Codice tavola	Titolo tavola	Scala		
Tav. A.1	Intervento A: Adeguamento del manufatto di sbarramento			
	e regolazione dell'invaso: Planimetria di progetto			
Tav. A.2	Intervento A: Adeguamento del manufatto di sbarramento			
	e regolazione dell'invaso: Stato di fatto e demolizioni			
	(pianta e sezioni)			
	Intervento A: Adeguamento del manufatto di sbarramento			
Tav. A.3	e regolazione dell'invaso: Pianta a quota 56.20 m s.l.m.			
	(Copertura)			
Tav.	Intervento A: Adeguamento del manufatto di sbarramento	1:200		
A.4.1	e regolazione dell'invaso: Sezioni da A-A a C-C	1.200		
Tav.	Intervento A: Adeguamento del manufatto di sbarramento	1:200		
A.4.2	e regolazione dell'invaso: Sezioni da D-A a H-H	1.200		
Tav.	Intervento A: Adeguamento del manufatto di sbarramento			
A.5.1	e regolazione dell'invaso: Pianta a quota 52.60 m s.l.m.			
71.3.1	(Impalcato ponte di servizio)			
Tav.	Intervento A: Adeguamento del manufatto di sbarramento			
A.5.2	e regolazione dell'invaso: Pianta a quota 50.30 m s.l.m.			
A.J.2	(scarico di superficie)			
Tav.	Intervento A: Adeguamento del manufatto di sbarramento			
A.5.3.1	e regolazione dell'invaso: Pianta a quota 46.75 m s.l.m.			
	(Muri manufatto di regolazione)			
Tav.	Intervento A: Adeguamento del manufatto di sbarramento			
A.5.3.2	e regolazione dell'invaso: Muri del manufatto di indica			
	sbarramento e regolazione			
		•		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Tav. A.5.3.3	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Muri di sponda, viste e sezioni	
Tav. A.5.4	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 38.00 m s.l.m. (Piano fondazione)	1:200
Tav. A.5.5	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 35.25 m s.l.m. (Piano di bonifica e diaframmi)	1:200
Tav. A.6	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Organi di manovra: paratoia	

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.3 Caratteristiche dei materiali strutturali

6.3.1 Calcestruzzo strutturale di classe C25/30

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da armare) impiegato per la realizzazione del manufatto in progetto è pari a 30 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 25 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 33 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 - Par 11.2.10.2]:

$$f_{ctm} = 0.30 \cdot f_{ck}^{\frac{2}{3}} \cong 2.5 \, MPa$$

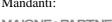
$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{v_c} \cong 14 MPa$$

dove:

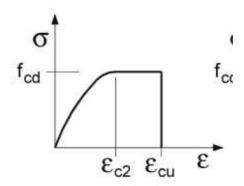
- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

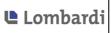

La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 31500 \, MPa$$




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.3.2 Acciaio per cemento armato tipo B450C

L'acciaio per calcestruzzo armato B450C è caratterizzato dai seguenti valori nominali della tensione di snervamento $f_{y,nom}$ e della tensione a carico massimo $f_{t,nom}$ da utilizzare nei calcoli [NTC 2018 – Par. 11.3.2.1]:

$$f_{v,nom} = 450 MPa$$

$$f_{t,nom} = 540 MPa$$

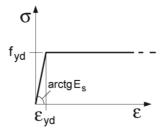
Tra i requisiti richiesti da normativa [NTC 2018 – Tab. 11.3.Ib] sono specificati i due vincoli seguenti in merito ai valori caratteristici delle tensioni.

$$f_{y,k} \ge f_{y,nom}$$

$$f_{t,k} \ge f_{t,nom}$$

Pertanto i valori considerati per le tensioni caratteristiche sono i seguenti:

$$f_{v,k} = f_{v,nom} = 450 MPa$$


$$f_{t,k} = f_{t,nom} = 540 MPa$$

La resistenza di progetto dell'acciaio $f_{v,d}$ è riferita alla tensione di snervamento ed il suo valore si ottiene come segue [NTC 2018 – Par. 4.1.2.1.1.2]:

$$f_{y,d} = \frac{f_{y,k}}{\gamma_s} \cong 391.3 MPa$$

essendo $\gamma_s=1.15$ il coefficiente parziale di sicurezza relativo all'acciaio.

Il diagramma di progetto tensione-deformazione dell'acciaio è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.2]. In particolare si è considerato un modello $\sigma - \varepsilon$ di elastico perfettamente plastico.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.4 Valutazione dell'azione sismica

La valutazione degli effetti riconducibili al sisma è stata condotta mediante un'analisi lineare pseudo-statica, cioè in sostanza l'azione sismica è stata rappresentata applicando forze statiche equivalenti.

Le forze inerziali degli elementi di progetto oppure riconducibili alla presenza di terreno o di carichi variabili sono state ottenute come prodotto delle forze di gravità per un opportuno coefficiente sismico orizzontale k_h , definito in normativa [NTC 2018 - Par. 7.11.6.2.1].

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

dove:

- β_m è il coefficiente di riduzione dell'accelerazione sismica;
- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- *g* è l'accelerazione di gravità.

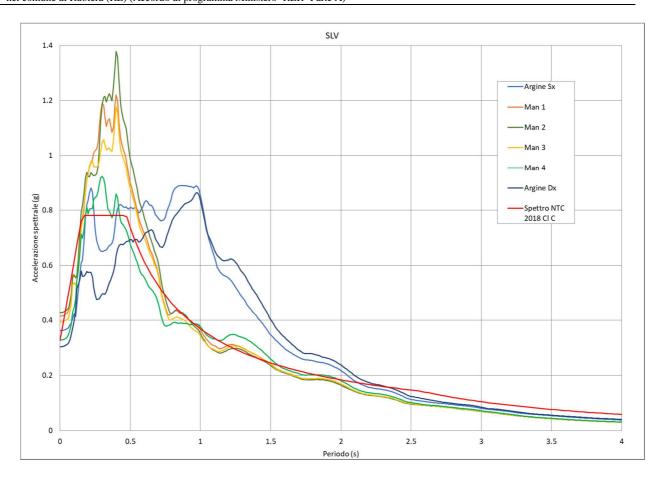
Il valore del coefficiente β_m è stato assunto unitario.

E' stato analizzato il solo Stato Limite di Vita (SLV), infatti:

- da normativa [NTC 2018 Tab. 7.3.III.], per CU III le verifiche SLD sono verifiche di resistenza, proprio come quelle SLV;
- avendo assunto $\beta_m = 1$, SLV risulta sicuramente più gravoso di SLD.

La risposta sismica è stata caratterizzata a livello locale tramite modellazione bidimensionale effettuata sulla base di una sezione litostratimetrica ricavata a partire da sondaggi effettuati in corrispondenza del manufatto regolatore.

Gli spettri elastici rappresentativi della risposta sismica locale SLV sono mostrati nel seguente grafico, in cui è riportato anche lo spettro definito da NTC.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.5 Definizione dei carichi e delle loro combinazioni

Oltre al peso proprio del muro (automaticamente calcolato dal software SAP2000), sono stati considerati i seguenti carichi:

> PESO PROPRIO DELLA TRAVE A GINOCCHIO

E' stato considerato che, essendo un'estremità della trave a ginocchio appoggiata sul muro arginale, metà del suo peso si scarica su di esso. Pertanto sulla sommità del muro è stato applicando un carico distribuito p_{trave} calcolato come segue.

$$p_{trave} = \frac{L}{2} \cdot s \cdot c = 80 \ kN/m$$

dove:

- L = 8 m è la lunghezza della trave a ginocchio;
- s = 0.8 m è lo spessore della trave a ginocchio;
- $c = 25 \, kN/m^3$ è il peso per unità di volume del calcestruzzo armato secondo normativa [NTC 2018 – Tab. 3.1.I].

> SPINTA TERRENO

Le spinte esercitate dal terreno sui muri sono state calcolate assumendo esclusivamente condizioni di lungo termine: sarebbero infatti sostanzialmente nulle considerando condizioni di breve termine in quanto, visti gli elevati valori di coesione non drenata, il terreno utilizzato per la realizzazione degli argini di fatto si autososterrebbe. In via conservativa il terreno è assunto saturo.

La formula utilizzata per definire gli sforzi efficaci orizzontali è quella seguente:

$$\sigma'_h = \gamma_{sat} \cdot K_a \cdot z - 2 \cdot c' \cdot \sqrt{K_a} = 5.89 \ kN/m^3 \cdot z - 13.36 \ kN/m^2$$

dove:

- $\gamma_{sat} = 19 \, kN/m^3$ è il peso efficacie del terreno saturo;
- $K_a = \frac{1-sen(\varphi')}{1+sen(\varphi')} \cong 0.31$ è il coefficiente di spinta attiva, essendo $\varphi' =$ 32° l'angolo di attrito del terreno;

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

- z è la profondità rispetto al piano campagna;
- $c' = 12 \, kN/m^2$.

> SOVRACCARICO MEZZI E PERSONE

La presenza di mezzi e persone sul piano campagna immediatamente a monte della sommità del muro è stata associata ad un carico $q = 10 \, kN/m^2$. La conseguente sovra-spinta del terreno sulla porzione centrale di muro è stata calcolata come segue.

$$\sigma'_{h,q} = q \cdot K_q = 3.1 \, kN/m^2$$

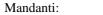
FORZE INERZIALI DOVUTE AL SISMA

In via conservativa, l'accelerazione orizzontale massima attesa al sito (a_{max}) è stata assunta calcolando la media dei massimi valori di accelerazione spettrale (S_e) ottenuti a partire dai sondaggi effettuati in corrispondenza del manufatto.

$$S_e \cong 1.18 \cdot 9.81 \, m/s^2 \cong 11.6 \, m/s^2$$

$$S_{e,max} = a_{max} \cdot F_o$$

 F_o è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale ed è pari a circa 2.4 allo SLV per il sito selezionato [All. A e B NTC 2008].


Pertanto:

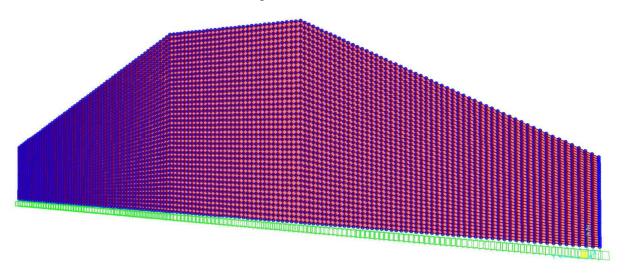
$$11.6 \; m/s^2 = a_{max} \cdot 2.4 \Longrightarrow a_{max} \cong 4.9 \; m/s^2$$

In definitiva, il valore del coefficiente sismico orizzontale k_h è assunto pari a 0.49.

Sono state considerate le combinazioni di carico e le situazioni progettuali maggiormente conservative. I coefficienti di combinazione, riportati nella tabella seguente, sono stati definiti in accordo con la normativa [NTC 2018 – Par. 2.5, Par. 6.2.4.1.1, D.M. 26/06/2014 – Cap. C.8.].

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

r						
COMBINAZIONI	SITUAZIONE	PESO	SPINTA	SOVRACCARICO	SISMA	
COMBINAZIONI	PROGETTUALE	PROPRIO	TERRENO	MEZZI E PERSONE	SISMA	
SLU	N	1.2	1.2	1.5		
FONDAMENTALE	No acqua	1.3	1.3	1.5	-	
SLE RARA	No acqua	1	1	1	-	
SLE FREQUENTE	No acqua	1	1	0.5	-	
SLE QUASI	N	1	1	0.3		
PERMANENTE	No acqua				-	
SISMICA SLV	No acqua	1	-	0.3	1	



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.6 Modellazione e risultati dell'analisi

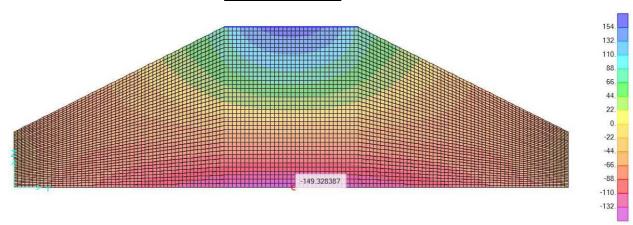
Il manufatto è stato modellato come segue.

Il manufatto in analisi è caratterizzato da una geometria piuttosto semplice e peraltro, considerato lo spessore e l'entità dei carichi agenti, è ragionevole assumere a priori che debba necessariamente essere armato. Per queste ragioni è stata prediletta una modellazione con elementi bidimensionali tipo "shell", che garantisce in questo frangente l'accuratezza dei risultati e consente di individuare in maniera agevole la distribuzione delle azioni interne, indispensabile per il corretto dimensionamento delle armature.

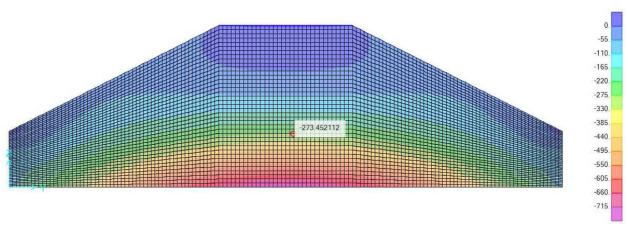
Alla base del muro sono stati predisposti vincoli di incastro che simulano la connessione con il plinto di fondazione. Questo non è stato oggetto di modellazione: le massime azioni che si generano al suo interno sono quelle trasmesse dal muro in corrispondenza dell'incastro.

Nel seguito si riportano:

- i diagrammi e i valori delle massime sollecitazioni flessionali e a taglio ottenuti agli SLU, con riferimento alla combinazione SISMICA (risulta sempre più critica di quella FONDAMENTALE in questo frangente);
- i diagrammi e i valori delle massime sollecitazioni flessionali ottenuti agli SLE, con riferimento alle combinazioni RARA, FREQUENTE e QUASI PERMANENTE.



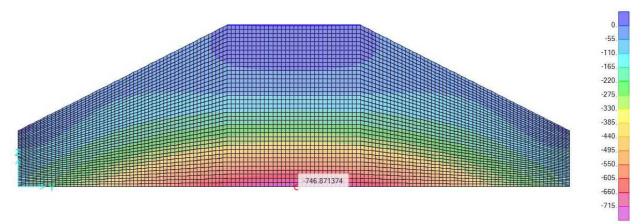
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

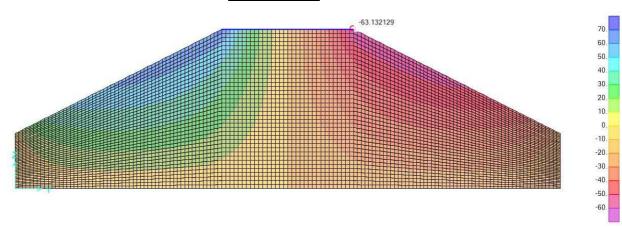

6.6.1 Risultati SLU

I valori riportati nelle figure seguenti sono espressi in kN·m/m (momenti) e in kN/m (forze).

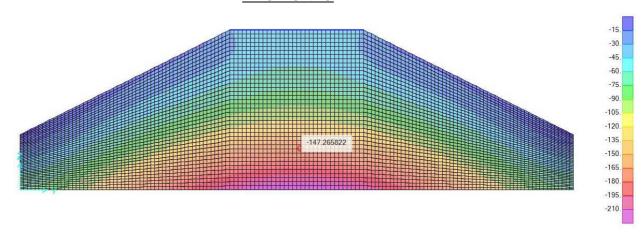

MOMENTO M11

MOMENTO M22





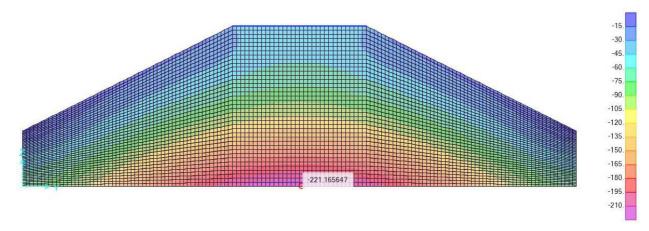
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


MOMENTO M22 - PORZIONE INFERIORE

TAGLIO V13

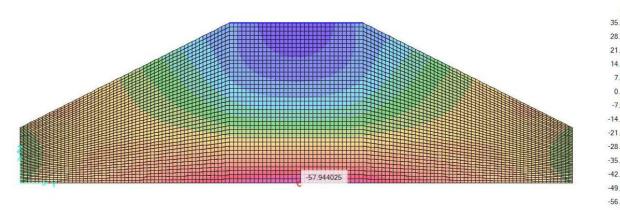


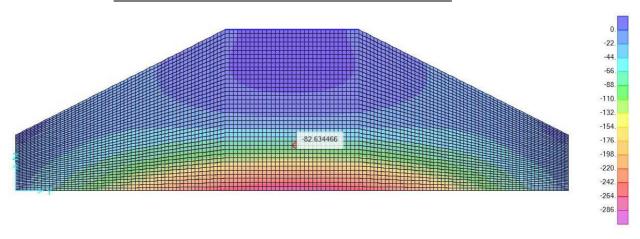
TAGLIO V23



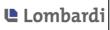
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

TAGLIO V23 – PORZIONE INFERIORE

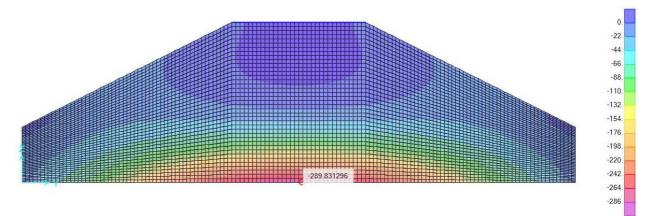


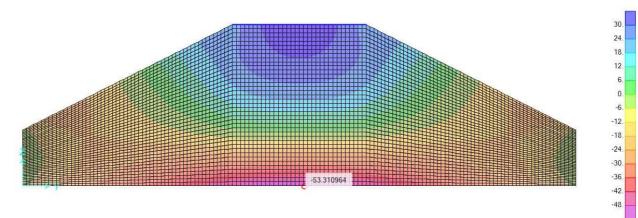

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.6.2 Risultati SLE

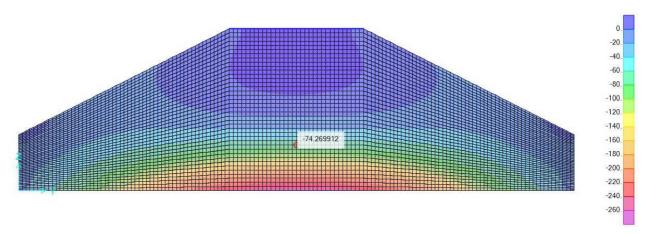

MOMENTO M11 – COMBINAZIONE SLE RARA

MOMENTO M22 - COMBINAZIONE SLE RARA





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

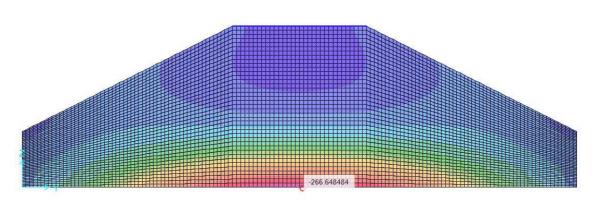

MOMENTO M22 – PORZIONE INFERIORE - COMBINAZIONE SLE RARA

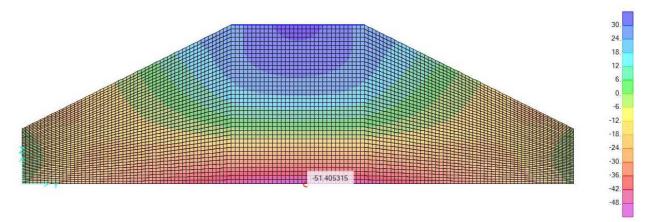
MOMENTO M11 – COMBINAZIONE SLE FREQUENTE



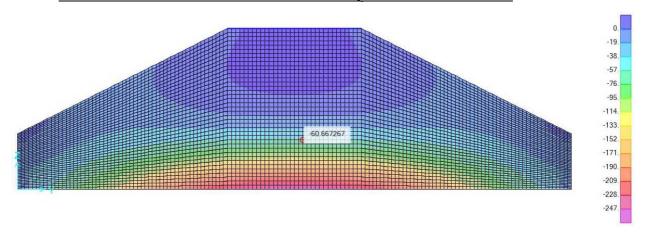
MOMENTO M22 – COMBINAZIONE SLE FREQUENTE

Mandanti: MAJONE&PARTNERS ENGINEERING



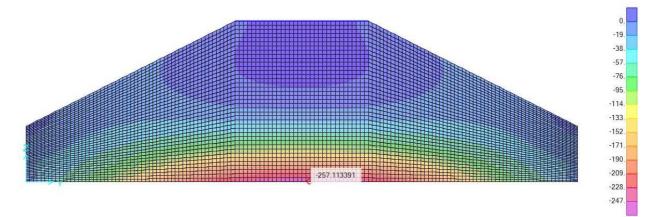

-20 -40. -60 -80. -100. -120 -140. -160 -180 -200 -220 -240 -260

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


MOMENTO M22 – PORZIONE INFERIORE -COMBINAZIONE SLE **FREQUENTE**

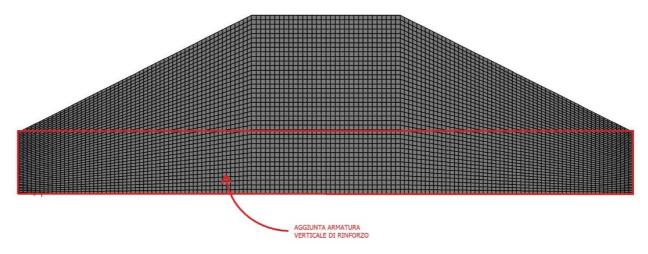
MOMENTO M11 – COMBINAZIONE SLE QUASI PERMANENTE

MOMENTO M22 – COMBINAZIONE SLE QUASI PERMANENTE



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

MOMENTO M22 – PORZIONE INFERIORE - COMBINAZIONE SLE QUASI **PERMANENTE**



6.7 Verifiche effettuate

I quantitativi di armatura necessari per garantire la resistenza strutturale del manufatto in progetto sono i seguenti:

- Ripartitori orizzontali $\rightarrow \frac{11.3 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.14\%$
- Armatura verticale $\rightarrow \frac{20.10 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.24\%$
- Armatura verticale di rinforzo $\Rightarrow \frac{31.42 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.39\%$ (da aggiungere allo 0.24% nella porzione inferiore di muro).

Sono astate effettuate le seguenti verifiche in accordo con la normativa:

- RESISTENZA FLESSIONALE (SLU) [NTC 2018 Par. 4.1.2.3.4];
- RESISTENZA NEI CONFRONTI DI SOLLECITAZIONI TAGLIANTI (SLU) [NTC 2018 – Par. 4.1.2.3.5];
- FESSURAZIONE (SLE) [NTC 2018 Par. 4.1.2.2.2];
- TENSIONI DI ESERCIZIO (SLE) [NTC 2018 Par. 4.1.2.2.5].

I calcoli sono riportati nei paragrafi che seguono.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.7.1 Ripartitori orizzontali

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	149.00	0.00	63.00
RARA	58.00		
FREQ.	53.00		
Q. PERM.	51.00		

VERIFICA MURO ARGINALE - Ripartitori orizzontali

Caratteristiche dei materiali

- Cls R_{ck} > 40 MPa

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _s =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\begin{array}{rcl} \beta_1 = & 0.80952 \\ \beta_2 = & 0.41597 \\ \epsilon_{c,2} = & 0.002 \\ \epsilon_{cu} = & 0.0035 \\ \epsilon_{uk} = & 0.075 \\ \epsilon_{yd} = f_{yd} \, / \, E_S = & 0.00186 \\ \epsilon_{ud} = 0.9 \, ^* \, \epsilon_{uk} = & 0.0675 \end{array}$

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione

Verifica a taglio

Elemento senza armature trasversali resistenti a taglio

63.00	kN				
				5.65	cn
				5.65	cn
100	cm		h =	80	cr
3	cm		d =	77	CI
	100	100 cm	100 cm	100 cm h =	5.65 5.65 100 cm h = 80

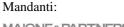
 $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 170.58 kΝ

con:

$$k = 1 + (200 / d)^{1/2} =$$
 1.51 \leq 2
 $\rho_1 = A_{SI} / (b_w * d) =$ 0.0007 \leq 0.02

A_{SI} = armatura longitudinale tesa

finale tesa
$$\sigma_{cp} = N_{Ed} / A_c = \begin{array}{ccc} 0.00 & \text{MPa} & < & 0.2 \, f_{cd} = & 2.82 & \text{MPa} \\ N_{Ed} = & 0.00 & \text{kN} \\ A_C = b * h = & 8'000 & \text{cm}^2 \\ \end{array}$$


 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione

$V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$	249.44	kN
---	--------	----

con

$$v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} = 0.324$$

V_{Rd} = min ($V_{Rd 1}$; $V_{Rd 2}$) =	249.44	kN	>	$V_{Ed} =$	63.00	kN
--	--------	----	---	------------	-------	----



		Varifica a flossi				
		Verifica a flessi	<u>one</u>			
M _{Ed} =	149.00	kNm				
N _{Ed} =	0.00	kN				
dove:	0.00					
A _{S.compr} =					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura c	ompressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa ali	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f _{cd} + (A _{S,compi}	$_{r}$ - $A_{S,tesa}$) * f_{yd} =	733	kN		
		,				
- Calcolo del momento resistente pe		(ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_S * A_{S,compr} = A_{S,tesa} *$ dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d' / 1 - d' /$	-					
dove. $O_S = E_S$ $\varepsilon_S = E_S$ ε_{cu} (1 - d / $\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \varepsilon_{cu} * E_S * A_{S,comp})$		*v-a *Fa*d	ı' * Δ -			
11'422	or Tyd ^S,tes x ²	sa/ Λ-ε _{cu} LS u +	194'355	X	-12'468'981	= 0
	2.56	cm	<	X X ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{CU} * (1 - d' / x) =$		MPa		A1 -	0.42	OIII
$M_{Rd} = A_{S,tesa} * f_{yd} * (I)$	n / 2 - d') + A	_{S,compr} * σ' _S * (h / :	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	169.40	kNm	>	M _{Ed} =	149.00	kNm

VERIFICA STATO LIMITE DI ESI	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi-	oni di ese	rcizio				
	<u>V</u> e	erifica tensioni in	<u>esercizio</u>			
$M_{Ed} =$	58.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n	* A _{S,tot})) * (d + γ * c	d') / (1 + γ)) ^{0,5}] =	=	10.08	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		418'253	cm⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	1.40	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	139.21	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	51.00	kNm		
A _{S,c}	ompr =				
As	S,tesa =				
con:					
	b =	100	cm	h =	80
	d' =	3	cm	d =	77
	n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 11.31$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 10.08$$

$$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 418253$$

$$cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 122.41$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{-0.00010}{-0.00010} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00035$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x)/3 = 23.31 cm$$

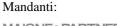
$$h_{c,eff\ 3} = h / 2 = 40.00$$
 cm $A_{c,eff} = min\ (h_{c,eff\ i}) * b = 750.00$ cm² $\rho_{eff} = A_s / A_{c,eff} = 0.008$

$$\begin{aligned} \alpha_{\rm e} &= {\rm E_s} \, / \, {\rm E_{cm}} = & 6.68 \\ \Delta_{\rm smax} &= k_3 \cdot d^{\dot{}} + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\it eff}} = & 37.26 \end{aligned} \qquad {\rm cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.130	mm	≤	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	1.23	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	122.41	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di fe	essurazione					
		Verifica a fe	ssurazione			
M _{Ed} =	53.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
on:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
J _{fess} = b * x ³ / 3	3 + n * A _{S,tesa} *	(d - x) ² + n * A _{S,comp}	$_{\text{or}} * (x - d')^2 =$		418'253	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	127.21	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(\mathbf{l} + \alpha_{e} \cdot \rho_{eff} \right)}{E} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(\mathbf{l} + \alpha_{e} \cdot \rho_{eff} \right)}{E}$		_				
$\varepsilon_{sm} = \frac{p_{eff}}{E_s} = \frac{P_{eff}}{E_s}$	-0.00007	$< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00036			
$\kappa_{\rm t}$ =	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	23.31	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.008					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d' + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{eff}} =$	37.26	cm				

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.7.2 Armatura verticale

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	273.00	0.00	147.00
RARA	83.00		
FREQ.	74.00		
Q. PERM.	61.00		

VERIFICA MURO ARGINALE - Armatura verticale

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γs =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

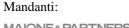
- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{vd} = f_{vd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm

Mandanti:


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 147.00 V_{Ed, base} = 10.05 cm² 10.05 A_{S,tesa} = cm² con: $b_w = b =$ 100 cm h = 80 cm d' = 3 77 cm d =cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 206.64 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 0.0013 $\rho_1 = A_{SI} / (b_w * d) =$ 0.02 A_{SI} = armatura longitudinale tesa MPa $\sigma_{cp} = N_{Ed} / A_c =$ < $0.2 f_{cd} =$ 2.82 MPa $N_{Ed} =$ 0.00 kΝ $A_C = b * h =$ 8'000 cm^{2} N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione 249.44 kΝ

 $V_{Rd\ 2}$ = $(v_{min}$ + 0.15 * σ_{cp}) * b_w * d = con

 $V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$ 249.44 kΝ 147.00 kΝ $V_{Ed} =$ >

		M				
		Verifica a flessi	<u>one</u>			
	070.00	LNI				
M _{Ed} =	273.00	kNm				
N _{Ed} =	0.00	kN				
dove:						2
$A_{S,compr} =$					10.05	cm ²
$A_{S,tesa} =$					10.05	cm ²
con:		•				
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{_{\mathrm{C}}} = \epsilon_{_{\mathrm{C}}} =$	0.0035					
$\sigma'_{s} < f_{yd}$					compressa in c	·-
$\sigma_s = f_{yd} =$	391.30	MPa		ar	matura tesa ali	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1$	f f _{cd} + (A _{S,compi}	$_{r}$ - $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente pe		(ovvero x < x₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$,					
dove: $\sigma'_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d')$						
β_1 * f_{cd} * b * x^2 - $(N_{Ed}$ - ϵ_{cu} * E_S * $A_{S,com}$		_a) * x - ε _{cu} * E _S * d				
11'422	x ²	+	345'521	x	-22'167'078	= 0
x =	3.15	cm	<	x ₁ =	6.42	cm
$\sigma'_S = E_S * \epsilon_{cu} * (1 - d' / x) =$	33.94	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (h / 2 - d') + A_{S,compr} * \sigma'_{S} * (h / 2 - d') + \beta_{1} * x * b * f_{cd} * (h / 2 - \beta_{2} * x) = A_{S,tesa} * f_{yd} * (h / 2 - d') + A_{S,compr} * \sigma'_{S} * (h / 2 - d') + A_{S,tesa} * f_{yd} * (h / 2 - h') + A_{S,tesa} * f_{yd} * (h $						
M _{Rd} =	297.18	kNm	>	M _{Ed} =	273.00	kNm
IVIRd -	257.10	KINIII		iviEd —	21 3.00	KINIII



VERIFICA STATO LIMITE DI ESI	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi-	oni di ese	rcizio				
	<u>Ve</u>	erifica tensioni in	<u>esercizio</u>			
M _{Ed} =	83.00	kNm				
$A_{S,compr} =$					10.05	cm ²
A _{S,tesa} =					10.05	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	20.11	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n	* A _{S,tot})) * (d + γ * 0	d') / (1 + γ)) ^{0,5}] =		12.81	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		705'916	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.51	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	113.21	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	61.00	kNm		
$A_{S,compr} =$				10.05
A _{S,tesa} =				10.05
on:				
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 20.11 & cm^2 \\ x &= & \left(n \, ^* \, A_{S,tot} \, / \, b \right) \, ^* \left[-1 \, + \, \left(1 \, + \, \left(2 \, ^* \, b \, / \, \left(n \, ^* \, A_{S,tot} \right) \right) \, ^* \, \left(d \, + \, \gamma \, ^* \, d' \right) \, / \, \left(1 \, + \, \gamma \right) \right] \, ^{0.5} \right] \, = & 12.81 & cm \\ J_{fess} &= & b \, ^* \, x^3 \, / \, 3 \, + \, n \, ^* \, A_{S,tesa} \, ^* \, \left(d \, - \, x \right)^2 \, + \, n \, ^* \, A_{S,compr} \, ^* \, \left(x \, - \, d' \right)^2 \, = & 705'916 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 83.21$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00000}{\text{cm}} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = \frac{0.00024}{\text{cm}}$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 \text{ cm}$$

$$h_{c,eff 2} = (h-x)/3 = 22.40 \text{ cm}$$

$$h_{c,eff 3} = h/2 = 40.00 \text{ cm}$$

$$A_{c,eff} = \min \left(h_{c,eff i} \right) * b = 750.00 \text{ cm}^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.013$$

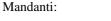
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 30.49 \text{ cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.072	mm	\leq	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.11	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	83.21	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f	essurazion	е				
		Verifica a fes	surazione			
$M_{Ed} =$	74.00	kNm				_
A _{S,compr} =					10.05	cm ²
A _{S,tesa} =					10.05	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	20.11	cm ²				
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,compr}	* (x - d') ² =		705'916	cm ⁴
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(\mathbf{l} + \alpha_{e} \cdot \rho_{eff} \right)}{E_{s}} = \frac{1}{E_{s}}$		$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00029			
K _t =	0.4					
$h_{c,eff 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x)/3 =$	22.40	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.013					
$\alpha_{e} = E_{s} / E_{cm} =$ $\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} =$	6.68 30.49	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.088	mm	<u> </u>	W _{d,max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

6.7.3 Armatura verticale – porzione inferiore

	M _{ED}	N _{ED} [kN/m]	T _{ED}
SLU	747.00	0.00	221.00
RARA	299.00		
FREQ.	267.00		
Q. PERM.	257.00		

VERIFICA MURO ARGINALE - Armatura verticale PORZIONE INFERIORE

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
$\gamma_{S} =$	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _s =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{vd} = f_{vd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 221.00 V_{Ed, base} = 25.76 cm² 25.76 A_{S,tesa} = cm² con: $b_w = b =$ 100 cm h = 80 cm d' = 3 77 cm d =cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ kΝ 282.77 con: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 < $\rho_1 = A_{SI} / (b_w * d) =$ \leq 0.02 A_{SI} = armatura longitudinale tesa MPa $\sigma_{cp} = N_{Ed} / A_c =$ < $0,2 f_{cd} =$ 2.82 MPa $N_{Ed} =$ 0.00 kΝ $A_C = b * h =$ 8'000 cm^2

 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione

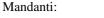
$V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 249.44	kN	
--	----	--

con

$$v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} = 0.324$$

$V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$	282.77	kN	>	V _{Ed} =	221.00	kN
---------------------------------------	--------	----	---	-------------------	--------	----

ENGINEERING



			Verifica a flessi	one			
	M	747.00	kNm				
	$M_{Ed} = N_{Ed} =$	0.00	kN				
dove:	· •Ed ─	0.00	KIN				
dovo.	A _{S,compr} =					25.76	cm ²
	A _{S.tesa} =					25.76	cm ²
con:	C,tood						
	b =	100	cm		h =	80	cm
	d' =	3	cm		d =	77	cm
	$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi	$x < x_1$:						
	$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
	$\sigma'_s < f_{yd}$					•	ampo elastico
	$\sigma_s = f_{yd} =$	391.30	MPa		arr	natura tesa al	la tensione f _{yd}
	$N_{Rd1} = \beta_1 * b * x_1 * i$	I _{cd} + (A _{S,compr}	- A _{S,tesa}) * t _{yd} =	733	kN		
Calaala	J-1 amanda madatanta man	N . N /	·				
	• del momento resistente per * f _{cd} + σ' _S * A _{S.compr} = A _{S.tesa} * f		OVVero x < x ₁)				
-	$I_{cd} + O_S = A_{S,compr} = A_{S,tesa} - I_{S}$ $I_{cd} + O_S = A_{S,compr} = A_{S,tesa} - I_{S}$ $I_{cd} + O_S = A_{S,compr} = A_{S,tesa} - I_{S}$						
	b * x^2 - $(N_{Ed} - \varepsilon_{cu} * E_S * A_{S,compr})$		_) * x - e * Ee * d	" * As somer = 0			
Pi 'ca '	11'422	x ²	a/ ^ ccu _5	885'396	X	-56'803'137	= 0
	x =	4.17	cm	<	x ₁ =	6.42	cm
	$\sigma'_{S} = E_{S} * \varepsilon_{Cu} * (1 - d' / x) =$		MPa	•	,		
	$M_{Rd} = A_{S,tesa} * f_{yd} * (h)$	/ 2 - d') + A _S	_{s,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2 ·	$-\beta_2 * x) =$	
		754.00	lcN lees	_	M	747.00	ls N Inn
	M _{Rd} =	751.98	kNm	>	$M_{Ed} =$	747.00	kNm

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione rara								
Si è condotta la verifica delle tensioni di esercizio								
	<u>Ve</u>	rifica tensioni in	<u>esercizio</u>					
M _{Ed} =	299.00	kNm						
$A_{S,compr} =$					25.76	cm ²		
A _{S,tesa} =					25.76	cm ²		
con:								
b =	100	cm		h =	80	cm		
d' =	3	cm		d =	77	cm		
n =	15							
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00							
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	51.52	cm ²						
$x = (n * A_{S,tot} / b) * [-1 + (1 - b)]$	+ (2 * b / (n	* A _{S,tot})) * (d + γ *	$d') / (1 + \gamma))^{0,5}] =$		18.31	cm		
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr}	$(x - d')^2 =$		1'626'208	cm ⁴		
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	3.37	MPa	<	0,60 * f _{ck} =	14.94	MPa		
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	161.86	MPa	<	0,8 * f _{yk} =	360.00	МРа		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

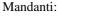
M	Ed =	257.00	kNm		
$A_{S,com}$					25.76
$A_{S,te}$	esa =				25.76
n:					
	b =	100	cm	h =	80
	d' =	3	cm	d =	77
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 51.52 & cm^2 \\ x &= & (n * A_{S,tot} \, / \, b) * [-1 + (1 + (2 * b \, / \, (n * A_{S,tot})) * (d + \gamma * d') \, / \, (1 + \gamma))^{0.5}] = & 18.31 & cm \\ J_{tess} &= & b * x^3 \, / \, 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 1'626'208 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 139.13$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{0.00049}{E_{s}} \ge 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00040$$

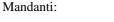
$$\kappa_{t} = 0.4$$


$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.088	mm	<	$W_{d,max} = 0.200$	mm

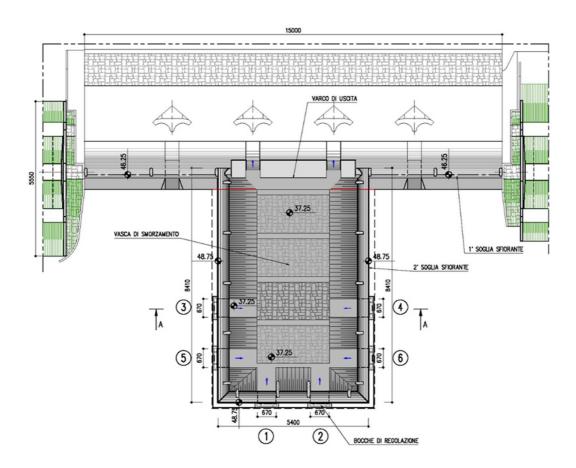
cm

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	2.89	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	139.13	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f						
		Verifica a fe	ssurazione			
$M_{Ed} =$	267.00	kNm				
$A_{S,compr} =$					25.76	cm ²
A _{S,tesa} =					25.76	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S.compr} / A_{S.tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	51.52	cm ²				
$x = (n * A_{S,tot} / b) * [-$ $J_{fess} = b * x^{3} / 3$		$(n * A_{S,tot})) * (d + \gamma)$ $(d - x)^2 + n * A_{S,comp}$	·		18.31 1'626'208	cm cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	144.54	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}}$	0.00051	$\geq 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00041			
2 3	0.4					
$\kappa_{t} =$	0.4					
,	7.50	cm				
$\kappa_{t} = h_{c,eff \ 1} = 2.5 * (h-d) = h_{c,eff \ 2} = (h-x) / 3 =$		cm cm				
$\kappa_{t} =$ $h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm cm				
$\kappa_{t} = h_{c,eff \ 1} = 2.5 * (h-d) = h_{c,eff \ 2} = (h-x) / 3 =$	7.50 20.56	cm				
$\kappa_{t} =$ $h_{c,eff\ 1} = 2.5 * (h-d) =$ $h_{c,eff\ 2} = (h-x) / 3 =$ $h_{c,eff\ 3} = h / 2 =$	7.50 20.56 40.00	cm cm				
$\kappa_{t} = \\ h_{c,eff\ 1} = 2.5 * (h-d) = \\ h_{c,eff\ 2} = (h-x) / 3 = \\ h_{c,eff\ 3} = h / 2 = \\ A_{c,eff} = min (h_{c,eff\ i}) * b = \\ \rho_{eff} = A_{s} / A_{c,eff} = \\ \alpha_{e} = E_{s} / E_{cm} = \\ \end{cases}$	7.50 20.56 40.00 750.00	cm cm				
$\kappa_{t} = \\ h_{c,eff\ 1} = 2.5 * (h-d) = \\ h_{c,eff\ 2} = (h-x) / 3 = \\ h_{c,eff\ 3} = h / 2 = \\ A_{c,eff} = min \left(\ h_{c,eff\ i} \right) * b = \\ \rho_{eff} = A_{s} / A_{c,eff} = \\ \end{cases}$	7.50 20.56 40.00 750.00 0.034	cm cm				



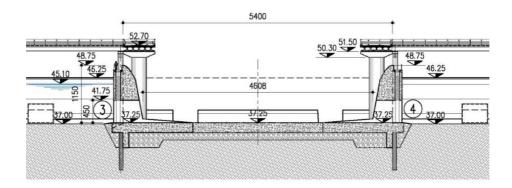
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7 Manufatto regolatore

7.1 Descrizione delle opere

L'intervento consisterà nella realizzazione - a monte della traversa esistente - di un corpo aggiuntivo, con pianta a "U" (lunghezza pari a circa 84 metri e larghezza pari a circa 54 metri) avente l'estremità aperta in corrispondenza della porzione demolita dello sbarramento esistente (vedi figura seguente).

I muri perimetrali del nuovo corpo (di altezza complessiva rispetto al piano di fondazione pari a 13,50 metri) costituiranno, in sommità, il secondo sfioratore di superficie della traversa posto a quota 48.75 m slm, e conterranno, alla loro base, le



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

sei nuove luci di regolazione, aventi dimensioni pari a 6.70 metri alla base e 4.50 metri d'altezza.

La struttura, da un punto di vista costruttivo, si configurerà come un muro a gravità massiccia, avente uno spessore di circa 4 metri alla base ed una fondazione di larghezza pari a circa 16 metri (vedi figura seguente).

La parte interna del manufatto (vedi sempre figura in alto) costituirà la vasca di smorzamento. Il fondo verrà realizzato con una platea in massi squadrati di volume almeno pari a 2 m³, interrotta per tutta la sezione trasversale da travi di contrasto di sezione 200 x 200 cm, collocate ad un interasse di 13.60 metri. La testa del muro sarà sagomata con un profilo Creager - Scimeni con soglia sfiorante posta a quota 48.75 m slm.

Come detto, il nuovo sbarramento sarà dotato di 6 bocche di regolazione, due per ogni lato della "U", di dimensioni pari a 6.70 x 4.50 metri e quota di scorrimento pari 37.25 m s.l.m. Le bocche saranno dotate di paratoie piane a comando oleodinamico. Il complesso scudo, gargami e cilindro oleodinamico delle paratoie sarà alloggiato in una struttura di protezione in c.a., in aggetto alla nuova muratura.

Per garantire facilità di ispezione delle paratoie e del circuito oleodinamico verrà realizzata una passerella di servizio a sbalzo, posta a quota 47.55 m slm, raggiungibile, mediante scala metallica, dal ponte di servizio di seguito descritto.

Si prevede la realizzazione del ponte di servizio che si svilupperà sopra le soglie sfioranti del manufatto unendo di fatto sponda destra e sinistra del Secchia.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

L'impalcato carrabile sarà composto da una soletta in c.a. di spessore 20 cm pavimentata con pacchetto stradale così composto: strato di 7 cm di binder compatto più 3 cm di tappeto di usura; la pavimentazione è contenuta entro cordoli lato strada di altezza 20 cm su cui verrà installato il guard-rail classe H2 bordo ponte. La larghezza corrente lorda dell'impalcato sarà pari a 6.40 metri, tranne in corrispondenza della porzione mediana dove verrà realizzata una piazzola di larghezza 9.40 m per la costruzione dell'edificio servizi.

La quota piano strada del ponte di servizio sarà pari a 52,70 m slm e la quota intradosso sarà pari a 51.60 m slm. L'impalcato verrà realizzato con travi prefabbricate precompresse, appoggiate su pulvini, sorretti da pile di sostegno delle dimensione 3.0 x 1.0 metri, collocate ad interasse di 18.00 metri e 14.60 metri rispettivamente sui lati lunghi e sul lato corto del nuovo corpo traversa.

All'interno dell'edificio servizi saranno alloggiati i principali impianti elettrici connessi al funzionamento degli organi di regolazione, compresi quelli del manufatto di derivazione nell'invaso laterale di cui al capitolo successivo, che saranno sinteticamente composti da:

- Accessori di cabina;
- Quadro elettrico generale di BT;
- Quadro elettrico di automazione e centro di controllo con PC;
- Centralina oleodinamica per funzionamento paratoie
- Gruppo elettrogeno.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7.2 Disegni di riferimento

Gli elaborati grafici relativi alle opere in analisi sono elencati nella tabella seguente.

Codice tavola	Titolo tavola	Scala
Tav. A.1	Intervento A: Adeguamento del manufatto di sbarramento e	1:500
	regolazione dell'invaso: Planimetria di progetto	
	Intervento A: Adeguamento del manufatto di sbarramento e	
Tav. A.2	regolazione dell'invaso: Stato di fatto e demolizioni (pianta e	1:200
	sezioni)	
	Intervento A: Adeguamento del manufatto di sbarramento e	
Tav. A.3	regolazione dell'invaso: Pianta a quota 56.20 m s.l.m.	1:200
	(Copertura)	
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	1:200
A.4.1	regolazione dell'invaso: Sezioni da A-A a C-C	1.200
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	1:200
A.4.2	regolazione dell'invaso: Sezioni da D-A a H-H	1.200
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	
A.5.1	regolazione dell'invaso: Pianta a quota 52.60 m s.l.m.	1:200
Α.σ.1	(Impalcato ponte di servizio)	
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	
A.5.2	regolazione dell'invaso: Pianta a quota 50.30 m s.l.m.	1:200
A.J.2	(scarico di superficie)	
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	
A.5.3.1	regolazione dell'invaso: Pianta a quota 46.75 m s.l.m. (Muri	1:200
A.J.3.1	manufatto di regolazione)	
Tav.	Intervento A: Adeguamento del manufatto di sbarramento e	
A.5.3.2	regolazione dell'invaso: Muri del manufatto di sbarramento	indicata
A.J.3.2	e regolazione	
I		<u> </u>

Tav. A.5.3.3	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Muri di sponda, viste e sezioni	1:100
Tav. A.5.4	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 38.00 m s.l.m. (Piano fondazione)	1:200
Tav. A.5.5	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Pianta a quota 35.25 m s.l.m. (Piano di bonifica e diaframmi)	1:200
Tav. A.6	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Organi di manovra: paratoia	indicata
Tav. A.7	Intervento A: Adeguamento del manufatto di sbarramento e regolazione dell'invaso: Interventi sul manufatto esistente: collegamenti con strutture in progetto ed interventi sulle luci esistenti	1:100

7.3 Caratteristiche dei materiali strutturali

7.3.1 Calcestruzzo strutturale di classe C20/25

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da non armare) impiegato per la realizzazione del corpo, della fondazione e delle travi di contrasto è pari a 25 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 21 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 29 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 - Par 11.2.10.2]:

$$f_{ctm} = 0.30 \cdot f_{ck}^{\frac{2}{3}} \cong 2.5 \, MPa$$

$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \cong 13 MPa$$

dove:

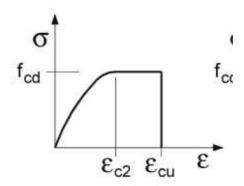
- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.4$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 30300 \, MPa$$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

7.3.2 Calcestruzzo strutturale di classe C25/30

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da armare) impiegato per la realizzazione delle pile dell'impalcato in progetto è pari a 30 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 25 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 33 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 – Par 11.2.10.2]:

$$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} \cong 2.5 \, MPa$$

$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \cong 14 MPa$$

dove:

- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

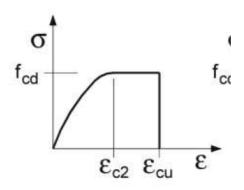
La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

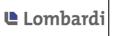
$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 31500 \, MPa$$

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

7.3.3 Acciaio per cemento armato tipo B450C

L'acciaio per calcestruzzo armato B450C è caratterizzato dai seguenti valori nominali della tensione di snervamento $f_{y,nom}$ e della tensione a carico massimo $f_{t,nom}$ da utilizzare nei calcoli [NTC 2018 – Par. 11.3.2.1]:

$$f_{v,nom} = 450 MPa$$

$$f_{t,nom} = 540 MPa$$

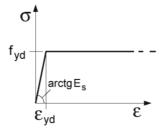
Tra i requisiti richiesti da normativa [NTC 2018 – Tab. 11.3.Ib] sono specificati i due vincoli seguenti in merito ai valori caratteristici delle tensioni.

$$f_{y,k} \ge f_{y,nom}$$

$$f_{t,k} \ge f_{t,nom}$$

Pertanto i valori considerati per le tensioni caratteristiche sono i seguenti:

$$f_{v,k} = f_{v,nom} = 450 MPa$$


$$f_{t,k} = f_{t,nom} = 540 MPa$$

La resistenza di progetto dell'acciaio $f_{v,d}$ è riferita alla tensione di snervamento ed il suo valore si ottiene come segue [NTC 2018 – Par. 4.1.2.1.1.2]:

$$f_{y,d} = \frac{f_{y,k}}{\gamma_s} \cong 391.3 MPa$$

essendo $\gamma_s=1.15$ il coefficiente parziale di sicurezza relativo all'acciaio.

Il diagramma di progetto tensione-deformazione dell'acciaio è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.2]. In particolare si è considerato un modello $\sigma - \varepsilon$ di elastico perfettamente plastico.

7.4 Valutazione dell'azione sismica

La valutazione degli effetti riconducibili al sisma è stata condotta mediante un'analisi lineare pseudo-statica, cioè in sostanza l'azione sismica è stata rappresentata applicando forze statiche equivalenti.

Le forze inerziali degli elementi di progetto (strutturali e non) oppure riconducibili alla presenza di terreno o di carichi variabili sono state ottenute come prodotto delle forze di gravità per un opportuno coefficiente sismico orizzontale k_h , definito in normativa [NTC 2018 – Par. 7.11.6.2.1].

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

dove:

- β_m è il coefficiente di riduzione dell'accelerazione sismica;
- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- *g* è l'accelerazione di gravità.

Il valore del coefficiente β_m è stato assunto unitario.

Le azioni inerziali dell'acqua p sono definite come da normativa [D.M. 26/06/2014 – Par. C.7.7.3.].

$$p = a \cdot r \cdot c \cdot y_0$$

dove:

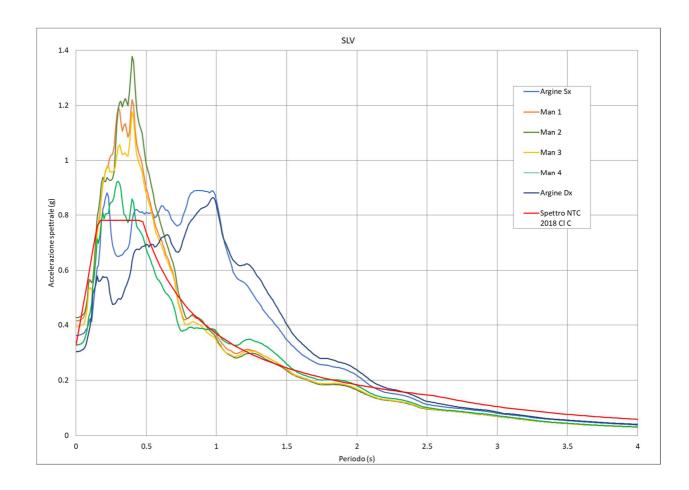
- α è il valore dell'accelerazione orizzontale massima al sito;
- r è la massa per unità di volume dell'acqua;
- y_0 è la differenza tra la quota dell'acqua presente nella combinazione sismica e la quota del punto più depresso dell'alveo naturale al piede del paramento.

•
$$c = \frac{c_m}{2} \left[\frac{y}{y_0} \cdot \left(2 - \frac{y}{y_0} \right) + \sqrt{\frac{y}{y_0} \cdot \left(2 - \frac{y}{y_0} \right)} \right]$$

essendo:

- y è la differenza tra la quota dell'acqua presente nella combinazione sismica e la quota del punto generico del paramento a cui è associata la pressione p;
- $c_m = -0.0073 \cdot a + 0.7412$ in cui α è l'angolo di inclinazione del paramento rispetto alla verticale espresso in gradi sessagesimali.

Mandanti:



E' stato analizzato il solo Stato Limite di Vita (SLV), infatti:

- da normativa [NTC 2018 Tab. 7.3.III.], per CU III le verifiche SLD sono verifiche di resistenza, proprio come quelle SLV;
- avendo assunto $\beta_m = 1$, SLV risulta sicuramente più gravoso di SLD.

La risposta sismica è stata caratterizzata a livello locale tramite modellazione bidimensionale effettuata sulla base di una sezione litostratimetrica ricavata a partire da sondaggi effettuati in corrispondenza del manufatto in progetto.

Gli spettri elastici rappresentativi della risposta sismica locale SLV sono mostrati nel seguente grafico, in cui è riportato anche lo spettro definito da NTC

7.5 Definizione dei carichi e delle loro combinazioni

Oltre al peso proprio dello sbarramento e degli elementi portanti dell'impalcato (automaticamente calcolato dal software SAP2000), sono stati considerati i seguenti carichi:

> PESO PROPRIO DELLA SOLETTA IN C.A.

E' stato considerato applicando ad ogni trave da ponte il carico uniformemente distribuito $p_{soletta}$ definito come segue:

$$p_{soletta} = s \cdot B \cdot c = 6 \, kN/m$$

dove:

- s = 0.2 m è lo spessore della soletta;
- B = 1.2 m è la larghezza della porzione di soletta pertinente a ciascuna
- $c = 25 \, kN/m^3$ è il peso per unità di volume del calcestruzzo armato secondo normativa [NTC 2018 – Tab. 3.1.I].

> PESO PROPRIO MANTO STRADALE

E' stato considerato applicando ad ogni trave da ponte il carico uniformemente distribuito $p_{manto\ stradale}$ definito come segue:

$$p_{manto_stradale} = s \cdot B \cdot c \cong 2 \ kN/m$$

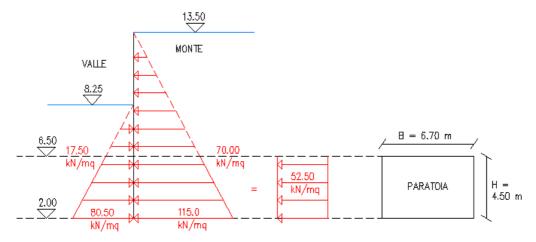
dove:

- s = 0.13 m è lo spessore del manto stradale;
- B = 1.2 m è la larghezza della porzione di manto stradale pertinente a ciascuna trave;
- $c = 13 \, kN/m^3$ è il peso per unità di volume del bitume.

> PESO PROPRIO GUARDRAIL

La presenza del guardrail è stata considerata applicando un carico uniformemente distribuito $p_{quardrail} = 0.4 \, kN/m$ (conservativo) lungo le travi esterne dell'impalcato. Inoltre sono stati applicati carichi concentrati pari a 0.5 kN alle estremità a sbalzo delle travi agli angoli del manufatto regolatore.

Mandanti:


> SPINTE DELL'ACQUA

Tali spinte sono state calcolate con riferimento ai livelli d'acqua previsti nella situazione progettuale di massima regolazione:

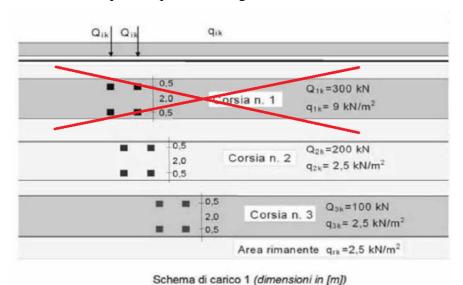
- con bocche aperte, nel caso di combinazione SISMICA → 46.25 m s.l.m. e 44.11 m s.l.m. rispettivamente a monte e a valle del manufatto;
- con bocche chiuse, nei casi di combinazione SLU FONDAMENTALE e SLE → 48.75 m s.l.m. e 44.11 m s.l.m. rispettivamente a monte e a valle del manufatto,

Si specifica che sono state considerate sottospinte idrostatiche, ovvero è stato trascurato il contributo associato ai fenomeni di filtrazione. Ciò in considerazione del fatto che la presenza dei diaframmi plastici comporta un notevole incremento del percorso di filtrazione (che avviene peraltro in un terreno caratterizzato da bassa permeabilità), con conseguente abbattimento delle pressioni in eccesso.

La presenza delle paratoie (bocche chiuse) è stata considerata applicando sul perimetro di battuta carichi distribuiti valutati in accordo con lo schema seguente.

$$P = 52.50 \frac{kN}{mq} \cdot B \cdot H \cong 1583 \ kN$$
$$q = \frac{P}{B+2 \cdot H} \cong 101 \frac{kN}{m}$$

(da applicare sui lati verticali e su quello superiore del perimetro rettangolare)


➢ MEZZI E PERSONE SULL'IMPALCATO

Si specifica innanzitutto che l'impalcato in progetto non è riconducibile ad un ponte stradale, in quanto su di esso si prevede la presenza di una strada privata, con permesso di accesso ai soli mezzi autorizzati, che dovranno peraltro rispettare limitazioni di carico.

Per questa ragione non si è ritenuto necessario considerare in maniera puntuale e sistematica gli schemi di carico definiti dalla normativa [NTC 2018 – Par. 5.2.3.3.3].

Piuttosto, la situazione maggiormente critica è stata valutata con riferimento allo schema di carico 1, ma trascurando la presenza del mezzo che genera un carico di 300 kN per ruota (il transito di veicoli tanto pesanti sull'implacato sarà vietato e impedito).

In definitiva è stata considerata la presenza di due veicoli parzialmente affiancati, con assi posteriori allineati in corrispondenza della mezzaria delle travi. Lo schema è quello riportato di seguito.

La distanza tra l'asse anteriore e quello posteriore è assunta pari a 7 m per entrambi i veicoli. Il carico distribuito è applicato su ogni trave tenendo conto che ognuna ha una larghezza di pertinenza B pari a 1.2 m.

$$q_{k,trave} = q_k \cdot B = 3 \ kN/m^2$$

➤ FORZE INERZIALI DOVUTE AL SISMA

In via conservativa, l'accelerazione orizzontale massima attesa al sito (a_{max}) è stata assunta calcolando la media dei massimi valori di accelerazione spettrale (S_e) ottenuti a partire dai sondaggi effettuati in corrispondenza del manufatto.

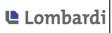
$$S_e \cong 1.18 \cdot 9.81 \, m/s^2 \cong 11.6 \, m/s^2$$

$$S_{e,max} = a_{max} \cdot F_o$$

 F_o è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale ed è pari a circa 2.4 allo SLV per il sito selezionato [All. A e B NTC 2008].

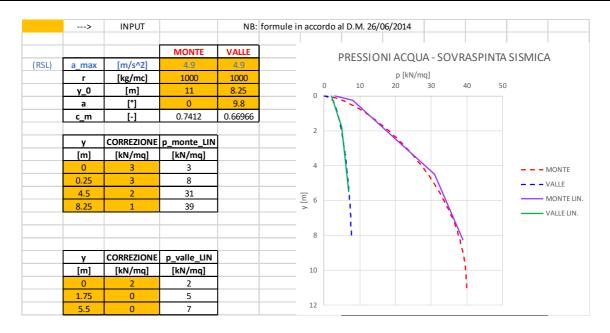
Pertanto:

$$11.6 \ m/s^2 = a_{max} \cdot 2.4 \Longrightarrow a_{max} \cong 4.9 \ m/s^2$$


In definitiva, il valore del coefficiente sismico orizzontale k_h è assunto pari a 0.49.

> SOVRASPINTA SISMICA DELL'ACQUA

Come mostrato nella figura seguente, gli andamenti delle sovra-pressioni sono stati opportunamente linearizzati in maniera tale che potessero essere definiti in SAP2000.



fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema essasa espansione esistente.

MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Sono state considerate le combinazioni di carico e le situazioni progettuali maggiormente conservative. I coefficienti di combinazione, riportati nella tabella seguente, sono stati definiti in accordo con la normativa [NTC 2018 – Par. 2.5, Par. 5.1.3.14, D.M. 26/06/2014 – Cap. C.8.].

COMBINAZIONI	SITUAZIONE PROGETTUALE	PESO PROPRIO	SPINTE ACQUA	AZIONI VARIABILI CONCENTRATE SULL'IMPALCATO	AZIONI VARIABILI DISTIBUITE SULL'IMPALCATO	SISMA
SLU FONDAMENTALE	Massima regolazione con bocche aperte	1.3	1.3	1.35	1.35	-
SLE RARA	Massima regolazione con bocche chiuse	1	1	1	1	-
SLE FREQUENTE	Massima regolazione con bocche chiuse	1	1	0.75	0.4	-
SLE QUASI PERMANENTE	Massima regolazione con bocche chiuse	1	1	-	-	-
SISMICA SLV	Massima regolazione con bocche chiuse	1	1	-	-	1

Gli effetti dell'evento sismico sono stati ottenuti considerando l'inviluppo degli effetti dovuti ad accelerazioni caratterizzate da versi opposti [NTC 2018 – Par. 7.3.5.].

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7.6 Modellazione e risultati dell'analisi

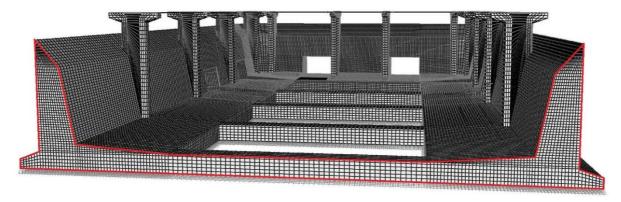
Il manufatto è stato modellato come segue.

Viste le caratteristiche del manufatto, si è ritenuto che il modello dovesse essere concepito sulla base di elementi tridimensionali, detti "solid", che consentono tra le altre cose uno studio approfondito e sistematico dello stato di sforzo all'interno della struttura.

Come per lo sbarramento esistente, anche in questo caso è risultata di particolare interesse la valutazione delle tensioni di trazione nel calcestruzzo: sulla base dei risultati generati dal modello è stato infatti possibile valutare se fosse necessario o meno prevedere la presenza di barre di armatura per garantire la resistenza degli elementi strutturali in progetto.

L'interazione suolo-terreno è stata simulata applicando vincoli di appoggio rigido ai nodi in corrispondenza dell'intradosso della fondazione: questa scelta è stata operata in considerazione della tipologia di terreno di fondazione (essendo argilloso, è ragionevole prevedere che non si verifichino cedimenti differenziali considerevoli) ed è comunque conservativa dal punto di vista strutturale.

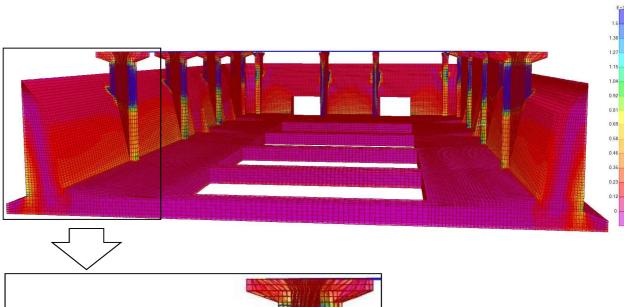
Si specifica che non è stato definito alcun vincolo in corrispondenza del giunto strutturale di collegamento allo sbarramento esistente. Questo perché si prevede che il giunto venga dimensionato in maniera tale da non trasmettere alcuna sollecitazione, né in condizioni statiche né in condizioni sismiche. Il perimetro della superficie lungo

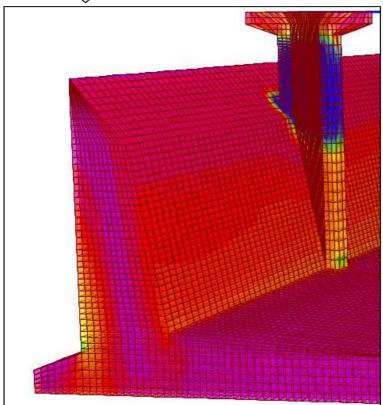


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

la quale è prevista l'installazione del giunto strutturale è evidenziato in rosso nella figura seguente.

Nel seguito si riportano i diagrammi maggiormente significativi al fine di valutare l'entità degli sforzi normali di trazione nel calcestruzzo agli SLU e agli SLE.

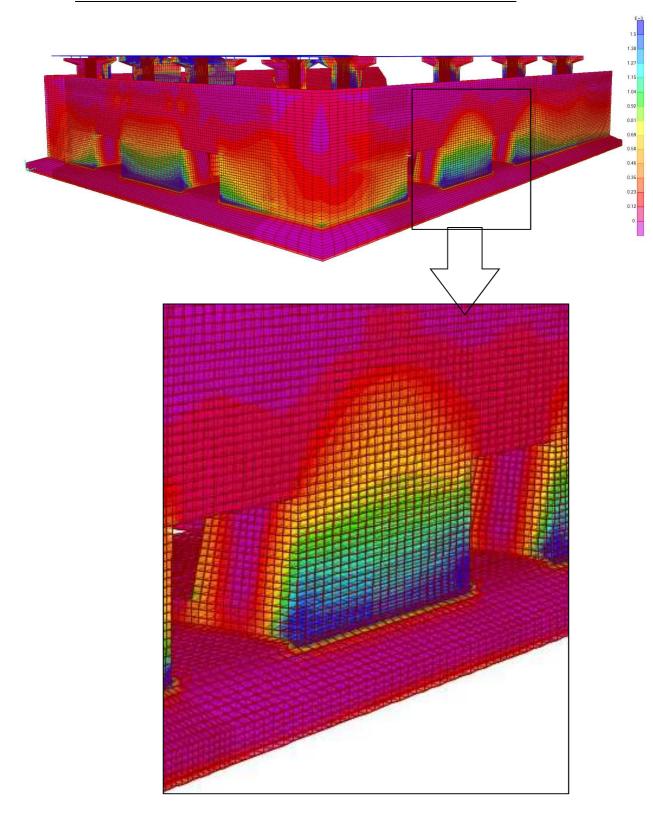



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7.6.1 Risultati SLU

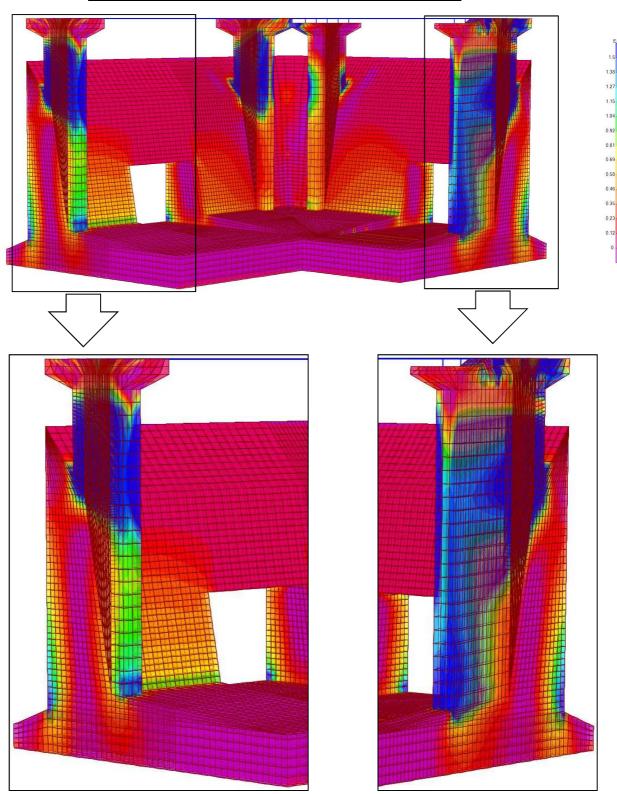
Per quanto riguarda gli Stati Limite Ultimi, i valori più elevati delle trazioni nel cls si ottengono considerando gli sforzi normali verticali generati da combinazione SISMICA, riportati di seguito. I valori in legenda sono espressi in kN/m².

SFORZI S33 – COMBINAZIONE SISMICA - VISTA DA VALLE



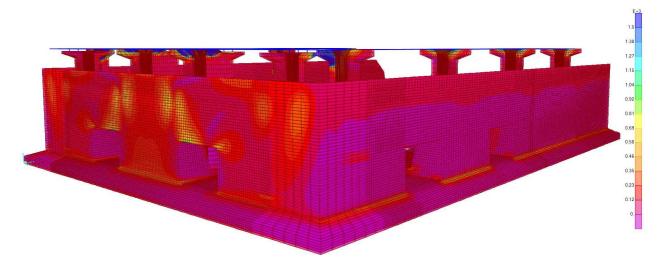
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

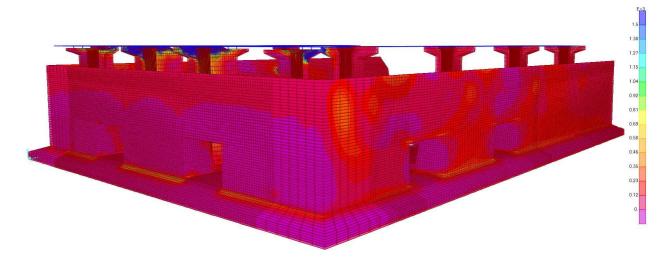
<u>SFORZI S33 – COMBINAZIONE SISMICA - VISTA DA MONTE</u>



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

<u>SFORZI S33 – COMBINAZIONE SISMICA - SEZIONE</u>



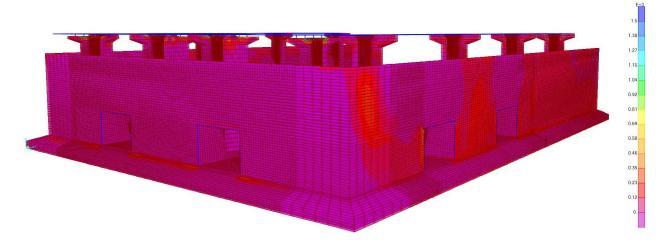

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per completezza si riportano di seguito tutti i diagrammi in vista da monte (nei quali si colgono sforzi maggiori rispetto alla vista da valle o alla sezione) relativi alla combinazione SISMICA e alla combinazione SLU FONDAMENTALE. Si tenga presente che gli sforzi S11 sono quelli normali paralleli al lato corto dello sbarramento, mentre gli sforzi S22 sono paralleli al lato lungo.

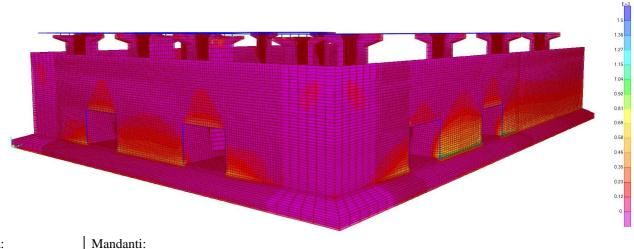
SFORZI S11 – COMBINAZIONE SISMICA – VISTA DA MONTE



SFORZI S22 – COMBINAZIONE SISMICA – VISTA DA MONTE



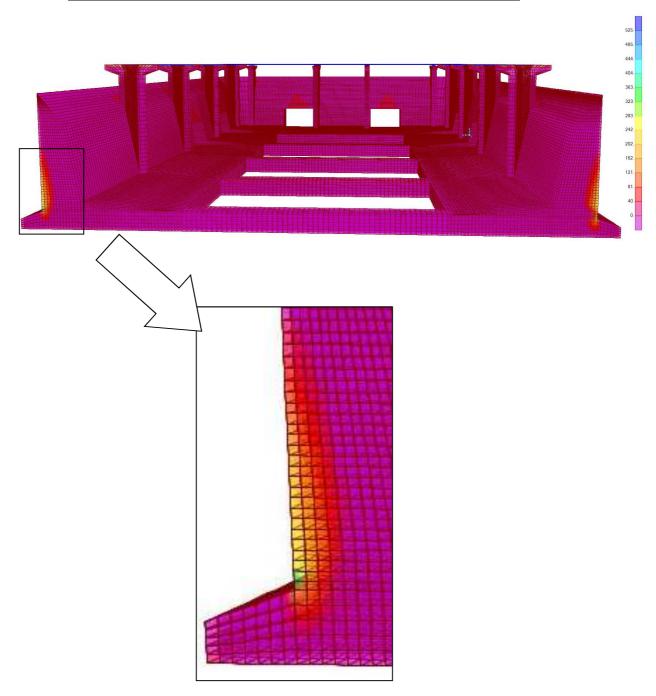
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


SFORZI S11 – COMBINAZIONE SLU FONDAMENTALE – VISTA DA MONTE

<u>SFORZI S22 – COMBINAZIONE SLU FONDAMENTALE – VISTA DA MONTE</u>

<u>SFORZI S33 – COMBINAZIONE SLU FONDAME</u>NTALE – VISTA DA MONTE

MAJONE&PARTNERS

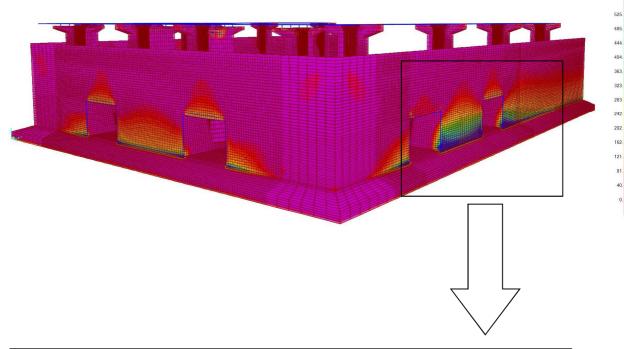


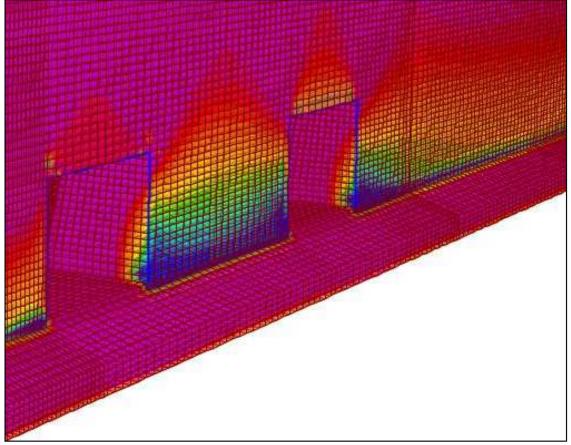
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7.6.2 Risultati SLE


Per quanto riguarda gli Stati Limite di Esercizio, i valori più elevati delle trazioni nel cls si ottengono considerando gli sforzi normali verticali, riportati di seguito con riferimento alla combinazione RARA.

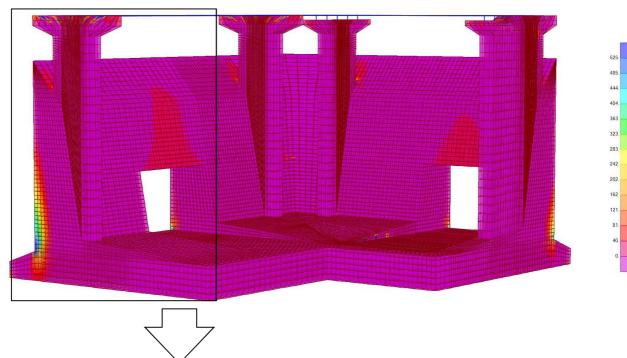
SFORZI S33 – COMBINAZIONE SLE RARA – VISTA DA VALLE

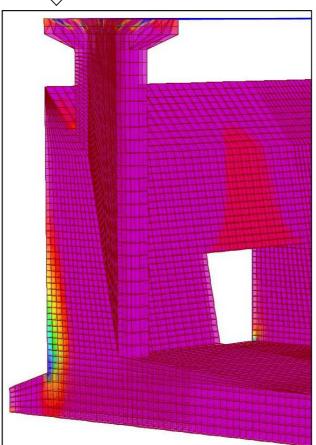




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

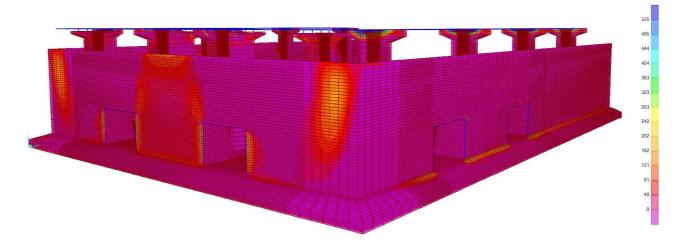
<u>SFORZI S33 – COMBINAZIONE SLE RARA – VISTA DA MONTE</u>

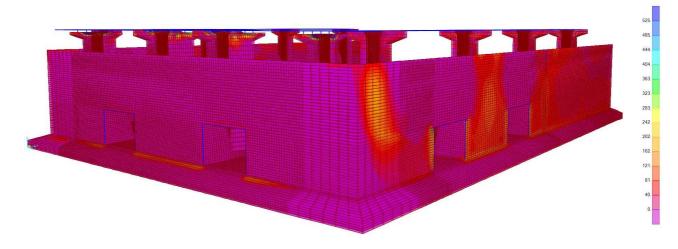




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


<u>SFORZI S33 – COMBINAZIONE SLE RARA – SEZIONE</u>




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per completezza si riportano i restanti diagrammi in vista da monte (nei quali si colgono sforzi maggiori rispetto alla vista da valle o alla sezione) relativi alla combinazione SLE RARA.

SFORZI S11 – COMBINAZIONE SLE RARA – VISTA DA MONTE



SFORZI S22 – COMBINAZIONE SLE RARA – VISTA DA MONTE

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

7.7 Verifiche effettuate

Come si evince, gli sforzi di trazione si attestano in genere su valori di fatto trascurabili: le uniche porzioni in cui raggiungono valori considerevoli (anche ben oltre il limite di resistenza a trazione del calcestruzzo selezionato) sono le pile a sostegno dell'impalcato e le zone immediatamente limitrofe ad esse.

Pertanto chiaramente dovranno essere predisposte armature che garantiscano la resistenza delle pile di nuova realizzazione. Il calcolo dell'area di ferro necessaria per far fronte alle sollecitazioni di progetto è riportato in un apposito capitolo della presente relazione di calcolo interamente dedicato al dimensionamento degli elementi portanti dell'impalcato.

Escludendo le trazioni nelle pile, il valore più elevato agli SLU, pari a 1200 kN/m³ (cioè 1.2 MPa) si registra nella porzione inferiore del paramento di monte sul lato lungo del corpo traversa, in corrispondenza dell'incastro con la platea di fondazione.

Valori prossimi alla resistenza di progetto a trazione si riscontrano in corrispondenza degli spigoli in coincidenza del perimetro di battuta delle paratoie, ma in porzioni di calcestruzzo limitate.

Relativamente agli SLE, i limiti massimi delle trazioni sono assunti in coerenza con quanto previsto dalla normativa per le dighe a gravità [D.M. 26/06/2014 – Par. D.2.2.2]:

- COMBINAZIONE SLE RARA $\rightarrow \sigma_t \leq 0.21 \cdot f_{ctm} \cong 0.5 \, MPa$
- COMBINAZIONE SLE QUASI PERMANENTE \rightarrow $\sigma_t = 0$ MPa (stato limite di decompressione)

Come si evince, gli sforzi di trazione agli SLE sono ovunque nulli o prossimi a zero. Considerando la combinazione SLE RARA, i valori limite sono raggiunti solo in porzioni limitate di calcestruzzo, nella porzione inferiore del paramento di monte sul lato lungo del corpo traversa, in corrispondenza dell'incastro con la platea di fondazione.

Alla luce di tali considerazioni, si ritiene che gli elementi di calcestruzzo in progetto siano in grado di garantire la resistenza necessaria per far fronte alle azioni di progetto

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

pur in assenza di barre di armatura (eccezione fatta per le pile a sostegno dell'impalcato).

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

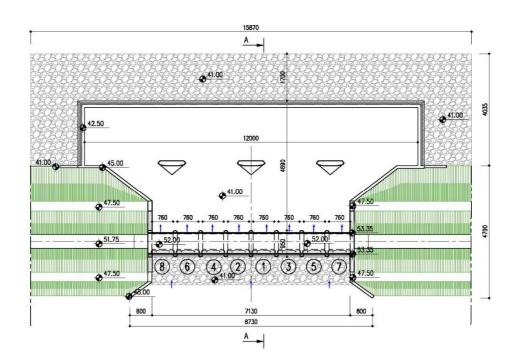
8 Manufatto di derivazione laterale

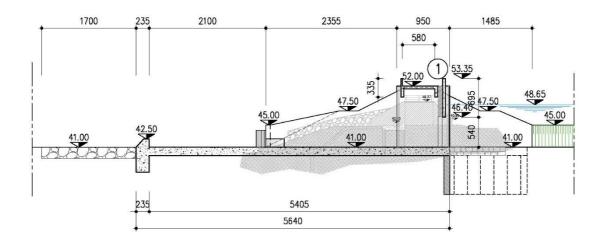
8.1 Descrizione delle opere

Attualmente la derivazione nell'invaso laterale, localizzato in sinistra orografica circa 900 metri a monte del manufatto di sbarramento e regolazione, avviene tramite una soglia in calcestruzzo di spessore pari a 3.00 metri, ricavata nel corpo arginale, di lunghezza pari a 120 m e ciglio sfiorante posto a quota 45.40 m s.l.m. La soglia è innestata tra due muri laterali sagomati seguendo la sezione trasversali del rilevato arginale esistente.

L'adeguamento del manufatto di derivazione nell'invaso laterale prevede la demolizione di parte dell'esistente soglia e la realizzazione di una nuova opera.

Il nuovo manufatto (vedi figure seguenti) sarà costituito da una batteria di 8 bocche di regolazione di luce netta pari a 7.60 x 5.40 metri dotate di paratoie piane a ruote a comando oleodinamico; le bocche di regolazione avranno una quota di scorrimento pari a 41.00 m slm e saranno intervallate da muri sagomati di spessore pari a 1,50 metri e lunghezza 9.50 metri.





MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

L'asse trasversale del nuovo manufatto coinciderà con l'asse della soglia esistente e pertanto quest'ultima verrà demolita completamente nella porzione centrale. Le rimanenti porzioni esterne verranno demolite parzialmente: i muri laterali fino a quota 46.00 dagli attuali 49.25 m s.l.m e la soglia in calcestruzzo fino a circa quota 44.00 m rispetto ai 45.40 m s.l.m. dell'esistente. Sui tratti laterali del manufatto esistente così

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

preparati verranno realizzate, secondo le sagome di progetto, le arginature di contenimento degli invasi.

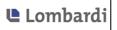
Ai lati del nuovo manufatto verranno realizzati dei muri di sponda sagomati a delimitare i tratti di imbocco e sbocco per il convogliamento della portata derivata. In quota i muri seguiranno il profilo dell'argine rialzato in progetto.

Lato fiume il fondo del tratto di imbocco per uno sviluppo di 10 m sarà rinforzato da una platea in massi intasati in cls di spessore 1.5 m.

Lato invaso verrà realizzata una vasca di dissipazione costituita da una platea in calcestruzzo di spessore pari a 1.50 m, da 3 blocchi prismatici di dissipazione e da una soglia perimetrale di controbattente di altezza pari a 1,50 metri.

Il nuovo manufatto sarà sormontat0, lungo l'intera estensione, da una strada di servizio, carrabile, pavimentata, di larghezza pari a larga 6.40 metri con piano stradale posto a quota 52.00 m slm.

Le apparecchiature per la movimentazione delle paratoie verranno alloggiate in un edificio servizi realizzato sulla arginatura a valle del manufatto. Tale edificio conterrà la centralina oleodinamica ed un quadro locale di comando, mentre PLC, quadro elettrico di automazione e centro di controllo, quadro elettrico generale di BT saranno localizzati nell'edificio servizi presso il manufatto di sbarramento e regolazione.


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.2 Disegni di riferimento

Gli elaborati grafici relativi alle opere in analisi sono elencati nella tabella seguente.

Codice tavola	Titolo tavola			
Tav. B.1	Intervento B: Adeguamento del manufatto di derivazione			
	nell'invaso laterale: Planimetria di progetto			
Tav. B.2	Intervento B: Adeguamento del manufatto di derivazione			
	nell'invaso laterale: Stato di fatto e demolizioni (pianta e			
	sezioni)			
Tav. B.3	Intervento B: Adeguamento del manufatto di derivazione			
	nell'invaso laterale: Pianta a quota 53.35 m s.l.m.			
	(copertura) e prospetto frontale			
Tav.	Intervento B: Adeguamento del manufatto di derivazione	1:200		
B.4.1	nell'invaso laterale: Sezioni da A-A a D-D	1.200		
Tav.	Intervento B: Adeguamento del manufatto di derivazione	1:200		
B.4.2	nell'invaso laterale: Sezioni da E-E a G-G	1.200		
Tav.	Intervento B: Adeguamento del manufatto di derivazione	1:100		
B.4.3	nell'invaso laterale: Muri laterali, vista e sezioni			
Tav.	Intervento B: Adeguamento del manufatto di derivazione			
B.5.1	nell'invaso laterale: Piante a quota 52,00 e 51,00 m s.l.m.			
	(soletta e muri)			
Tav. B.5.2	Intervento B: Adeguamento del manufatto di derivazione			
	nell'invaso laterale: Piante a quota 41,00 e 39,50 m s.l.m.			
	(piano fondazione e diaframmi)			

8.3 Caratteristiche dei materiali strutturali

8.3.1 Calcestruzzo strutturale di classe C20/25

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da armare) impiegato per la realizzazione della fondazione è pari a 25 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 21 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 29 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 - Par 11.2.10.2]:

$$f_{ctm} = 0.30 \cdot f_{ck}^{\frac{2}{3}} \cong 2.5 \, MPa$$

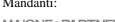
$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{v_c} \cong 13 MPa$$

dove:

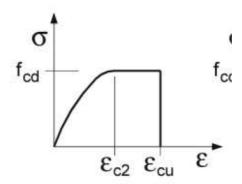
- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c=1.4$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.


La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 30300 \, MPa$$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

8.3.2 Calcestruzzo strutturale di classe C25/30

Il valore di resistenza caratteristica cubica R_{ck} del calcestruzzo (da armare) impiegato per la realizzazione di tutti gli elementi strutturali del manufatto in progetto eccetto la fondazione è pari a 30 MPa.

Si definiscono dunque il valore caratteristico e medio della resistenza cilindrica, rispettivamente f_{ck} e f_{cm} [NTC 2018 – Par 11.2.10.1].

$$f_{ck} = 0.83 \cdot R_{ck} \cong 25 MPa$$

$$f_{cm} = f_{ck} + 8 MPa = 33 MPa$$

Come valori della resistenza media e caratteristica a trazione semplice (assiale) del calcestruzzo, rispettivamente f_{ctm} e f_{ctk} , si sono assunti i seguenti valori [NTC 2018 - Par 11.2.10.2]:

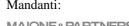
$$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} \cong 2.5 \, MPa$$

$$f_{ctk} = 0.70 \cdot f_{ctm} \cong 2 MPa$$

La resistenza di progetto a compressione è calcolata in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.1].

$$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \cong 14 MPa$$

dove:

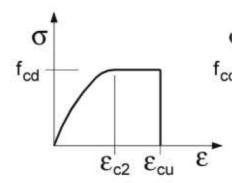

- $\alpha_{cc} = 0.85$ è il coefficiente riduttivo per le resistenze di lunga durata;
- $\gamma_c = 1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

La resistenza di progetto a trazione è definita in accordo con la normativa come segue [NTC 2018 – Par. 4.1.2.1.1.2].

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} \cong 1.5 MPa$$

Il modulo elastico del calcestruzzo è stato valutato con la seguente formula [NTC 2018 - Par. 11.2.10.3].

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cong 31500 \, MPa$$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Il diagramma di progetto tensione-deformazione del calcestruzzo è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.1]. In particolare si è considerato un modello $\sigma - \varepsilon$ di tipo parabola-rettangolo.

I valori assunti per ε_{c2} ed ε_{cu} sono quelli prescritti per classi di resistenza pari o inferiore a C50/60, ovvero rispettivamente 0.20% e 0.35%.

8.3.3 Acciaio per cemento armato tipo B450C

L'acciaio per calcestruzzo armato B450C è caratterizzato dai seguenti valori nominali della tensione di snervamento $f_{y,nom}$ e della tensione a carico massimo $f_{t,nom}$ da utilizzare nei calcoli [NTC 2018 – Par. 11.3.2.1]:

$$f_{v,nom} = 450 MPa$$

$$f_{t,nom} = 540 MPa$$

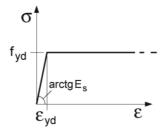
Tra i requisiti richiesti da normativa [NTC 2018 – Tab. 11.3.Ib] sono specificati i due vincoli seguenti in merito ai valori caratteristici delle tensioni.

$$f_{v,k} \ge f_{v,nom}$$

$$f_{t,k} \ge f_{t,nom}$$

Pertanto i valori considerati per le tensioni caratteristiche sono i seguenti:

$$f_{v,k} = f_{v,nom} = 450 MPa$$


$$f_{t,k} = f_{t,nom} = 540 MPa$$

La resistenza di progetto dell'acciaio $f_{v,d}$ è riferita alla tensione di snervamento ed il suo valore si ottiene come segue [NTC 2018 – Par. 4.1.2.1.1.2]:

$$f_{y,d} = \frac{f_{y,k}}{\gamma_s} \cong 391.3 MPa$$

essendo $\gamma_s=1.15$ il coefficiente parziale di sicurezza relativo all'acciaio.

Il diagramma di progetto tensione-deformazione dell'acciaio è stato assunto in accordo con la normativa [NTC 2018 – Par. 4.1.2.1.2.2]. In particolare si è considerato un modello $\sigma - \varepsilon$ di elastico perfettamente plastico.

8.4 Valutazione dell'azione sismica

La valutazione degli effetti riconducibili al sisma è stata condotta mediante un'analisi lineare pseudo-statica, cioè in sostanza l'azione sismica è stata rappresentata applicando forze statiche equivalenti.

Le forze inerziali degli elementi di progetto (strutturali e non) oppure riconducibili alla presenza di terreno o di carichi variabili sono state ottenute come prodotto delle forze di gravità per un opportuno coefficiente sismico orizzontale k_h , definito in normativa [NTC 2018 – Par. 7.11.6.2.1].

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

dove:

- β_m è il coefficiente di riduzione dell'accelerazione sismica;
- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- *g* è l'accelerazione di gravità.

Il valore del coefficiente β_m è stato assunto unitario.

Le azioni inerziali dell'acqua p sono definite come da normativa [D.M. 26/06/2014 – Par. C.7.7.3.].

$$p = a \cdot r \cdot c \cdot y_0$$

dove:

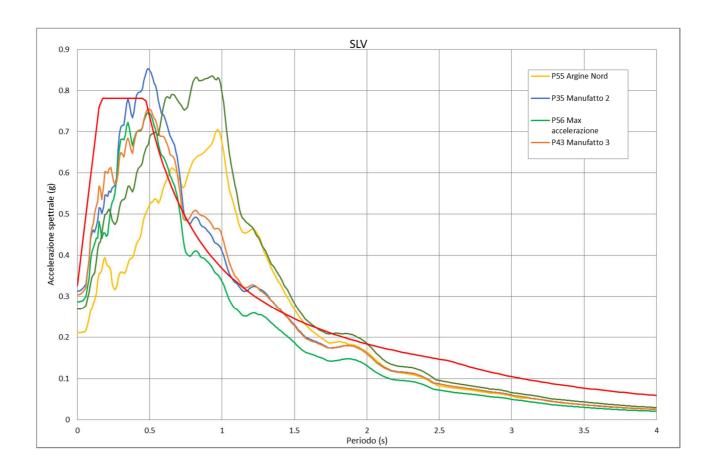
- α è il valore dell'accelerazione orizzontale massima al sito;
- r è la massa per unità di volume dell'acqua;
- y_0 è la differenza tra la quota dell'acqua presente nella combinazione sismica e la quota del punto più depresso dell'alveo naturale al piede del paramento.

•
$$c = \frac{c_m}{2} \left[\frac{y}{y_0} \cdot \left(2 - \frac{y}{y_0} \right) + \sqrt{\frac{y}{y_0} \cdot \left(2 - \frac{y}{y_0} \right)} \right]$$

essendo:

- y è la differenza tra la quota dell'acqua presente nella combinazione sismica e la quota del punto generico del paramento a cui è associata la pressione p;
- $c_m = -0.0073 \cdot a + 0.7412$ in cui α è l'angolo di inclinazione del paramento rispetto alla verticale espresso in gradi sessagesimali.

Mandanti:



E' stato analizzato il solo Stato Limite di Vita (SLV), infatti:

- da normativa [NTC 2018 Tab. 7.3.III.], per CU III le verifiche SLD sono verifiche di resistenza, proprio come quelle SLV;
- avendo assunto $\beta_m = 1$, SLV risulta sicuramente più gravoso di SLD.

La risposta sismica è stata caratterizzata a livello locale tramite modellazione bidimensionale effettuata sulla base di una sezione litostratimetrica ricavata a partire da sondaggi effettuati in corrispondenza del manufatto in progetto.

Gli spettri rappresentativi della risposta sismica locale SLV sono mostrati nel seguente grafico, in cui è riportato anche lo spettro definito da NTC.

8.5 Definizione dei carichi e delle loro combinazioni

Oltre al peso proprio degli elementi strutturali (automaticamente calcolato dal software SAP2000), sono stati considerati i seguenti carichi:

> PESO PROPRIO DELLA PAVIMENTAZIONE STRADALE

E' stato considerato applicando alla soletta il carico uniformemente distribuito *p* definito come segue:

$$p = s \cdot c = 1.3 \, kN/m^2$$

dove:

- s = 0.1 m è lo spessore della pavimentazione stradale;
- $c = 13 \, kN/m^3$ è il peso per unità di volume del bitume.

> SPINTE DELL'ACQUA

Tali spinte sono state calcolate con riferimento ai livelli d'acqua previsti nella situazione progettuale maggiormente critica, ovvero quella in cui si raggiunge un livello di 48.75 m s.l.m. a monte del manufatto mentre la vasca di dissipazione è completamente vuota.

Si specifica che sono state considerate sottospinte idrostatiche, ovvero è stato trascurato il contributo associato ai fenomeni di filtrazione. Ciò in considerazione del fatto che la presenza dei diaframmi plastici comporta un notevole incremento del percorso di filtrazione (che avviene peraltro in un terreno caratterizzato da bassa permeabilità), con conseguente abbattimento delle pressioni in eccesso.

> SPINTE DEL TERRENO SUI MURI PERIMETRALI

Le spinte esercitate dal terreno sui muri sono state calcolate assumendo esclusivamente condizioni di lungo termine: sarebbero infatti sostanzialmente nulle considerando condizioni di breve termine in quanto, visti gli elevati valori di coesione non drenata, il terreno utilizzato per la realizzazione degli argini di fatto si autososterrebbe. In via conservativa il terreno è assunto saturo.

> La formula utilizzata per definire gli sforzi efficaci orizzontali è quella seguente:

$$\sigma_h' = \gamma_{sat} \cdot K_a \cdot z - 2 \cdot c' \cdot \sqrt{K_a}$$

dove:

- $\gamma_{sat} = 19 \ kN/m^3$ è il peso efficacie del terreno saturo;
- $K_a = \frac{1-sen(\varphi')}{1+sen(\varphi')} \cong 0.28$ è il coefficiente di spinta attiva, essendo $\varphi' =$ 34° l'angolo di attrito del terreno;
- z è la profondità rispetto al piano campagna;
- $c' = 9 \, kN/m^2$.

➤ MEZZI E PERSONE SULLA SOLETTA

In via conservativa, i carichi riconducibili alla presenza di mezzi e persone sulla soletta sono stati assunti in accordo con quanto previsto in normativa per aree adibite al traffico e parcheggio di veicoli medi [NTC 2018 – Tab. 3.1.II – Cat. G1.

Pertanto sono stati considerati:

- 4 carichi concentrati pari a 50 kN per simulare la presenza di un veicolo con gli assi anteriore e posteriore delle ruote in corrispondenza della mezzaria di due luci consecutive:
- un carico distribuito pari a 5 kN/m² applicato a tutta la soletta.

> FORZE INERZIALI DOVUTE AL SISMA

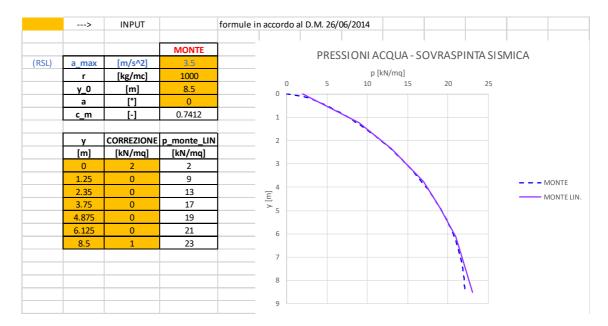
In via conservativa, l'accelerazione orizzontale massima attesa al sito (a_{max}) è stata assunta in corrispondenza del picco più elevato degli spettri elastici relativi alla RSL ($S_{e,max}$).

$$S_{e,max} = 0.853 \; g = 0.853 \cdot 9.81 \; m/s^2 \cong 8.4 \; m/s^2$$

$$S_{e,max} = a_{max} \cdot F_o$$

 F_o è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale ed è pari a circa 2.4 allo SLV per il sito selezionato [All. A e B NTC 2008]

Mandanti:


Pertanto:

$$8.4 \, m/s^2 = a_{max} \cdot 2.4 \Longrightarrow a_{max} = 3.5 \, m/s^2$$

In definitiva, il valore del coefficiente sismico orizzontale k_h è assunto pari a 0.35.

> SOVRASPINTA SISMICA DELL'ACQUA

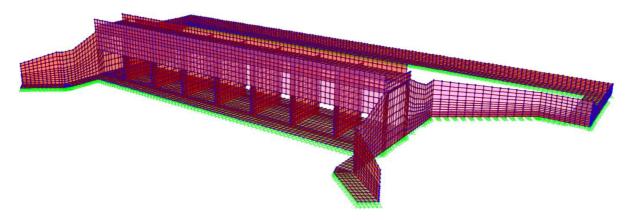

Come mostrato nella figura seguente, l'andamento delle sovra-pressioni è stato opportunamente linearizzato in maniera tale che potesse essere definito in SAP2000.

Sono state considerate le combinazioni di carico e le situazioni progettuali maggiormente conservative. I coefficienti di combinazione, riportati nella tabella seguente, sono stati definiti in accordo con la normativa [NTC 2018 – Par. 2.5, Par. 6.2.4.1.1, D.M. 26/06/2014 – Cap. C.8.].

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

COMBINAZIONI	SITUAZIONE	PESO	SPINTE	SPINTE	AZIONI VARIABILI	SISMA
	PROGETTUALE	PROPRIO	TERRENO	ACQUA	SULL'IMPALCATO	SISMA
SLU	F	1.3	1.3	1.3	1.5	-
FONDAMENTALE	Frequente					
SLE RARA	Frequente	1	1	1	1	-
SLE FREQUENTE	Frequente	1	1	1	0.5	-
SLE QUASI	Emagnanta	1	1	1	0.3	
PERMANENTE	Frequente					-
SISMICA SLV	Frequente	1	1	1	0.3	1

Gli effetti dell'evento sismico sono stati ottenuti considerando l'inviluppo degli effetti dovuti ad accelerazioni caratterizzate da direzioni x ed y e versi opposti [NTC 2018 – Par. 7.3.5.].



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6 Modellazione e risultati dell'analisi

Il manufatto è stato modellato come segue.

Considerate le dimensioni degli elementi strutturali che costituiscono il manufatto in analisi e l'entità dei carichi cui essi sono soggetti, è ragionevole assumere a priori che debbano necessariamente essere armati. Per queste ragioni è stata prediletta una modellazione con elementi bidimensionali tipo "shell", che garantisce in questo frangente l'accuratezza dei risultati e consente di individuare in maniera agevole la distribuzione delle azioni interne, indispensabile per il corretto dimensionamento delle armature.

L'interazione suolo-terreno è stata simulata applicando vincoli di appoggio rigido ai nodi in corrispondenza della fondazione: questa scelta è stata operata in considerazione della tipologia di terreno di fondazione (essendo argilloso, è ragionevole prevedere che non si verifichino cedimenti differenziali considerevoli) ed è comunque conservativa dal punto di vista strutturale.

Nel seguito si riportano:

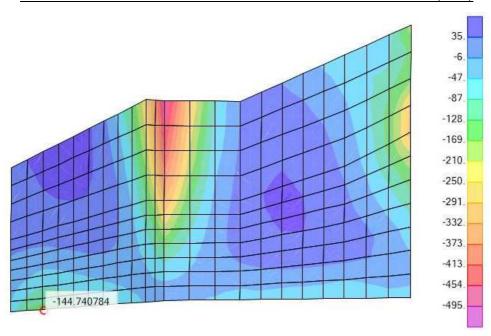
- i diagrammi e i valori delle massime sollecitazioni flessionali e a taglio ottenuti agli SLU;
- i diagrammi e i valori delle massime sollecitazioni flessionali ottenuti agli SLE.

Agli SLU sono stati riportati i diagrammi relativi alle azioni maggiormente critiche per ogni elemento strutturale (o porzione di esso) analizzando sia la combinazione SISMICA INVILUPPO (Max e Min) sia la combinazione SLU FONDAMENTALE.

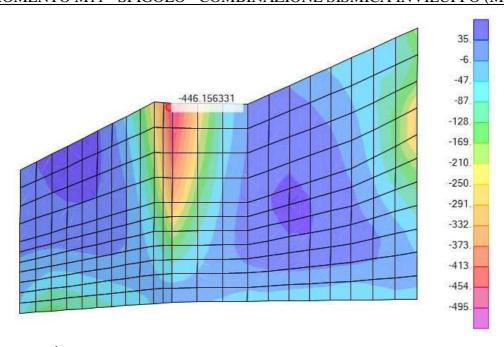
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Lo stesso procedimento è stato ripetuto per le sollecitazioni flessionali agli SLE, ma considerando, per tutti gli elementi strutturali investigati eccetto la soletta di copertura, solo ed esclusivamente la combinazione SLE RARA: in altri termini i momenti relativi alle combinazioni SLE FREQUENTE e SLE QUASI PERMANENTE sono stati assunti cautelativamente pari a quelli ricavati da combinazione SLE RARA (rispetto ai quali non si sono riscontrate peraltro differenze rilevanti).

Alcuni elementi strutturali (ad esempio quelli che costituiscono lo sfioro perimetrale della vasca di dissipazione) sono soggetti ad azioni trascurabili, delle quali pertanto non si è ritenuto necessario riportare i diagrammi. I diagrammi delle fondazioni invece non sono stati riportati in considerazione del fatto che le massime azioni al loro interno sono quelle trasmesse dal muro in corrispondenza dell'incastro.


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.1 Muro di sponda sp. 0.8 m lato monte

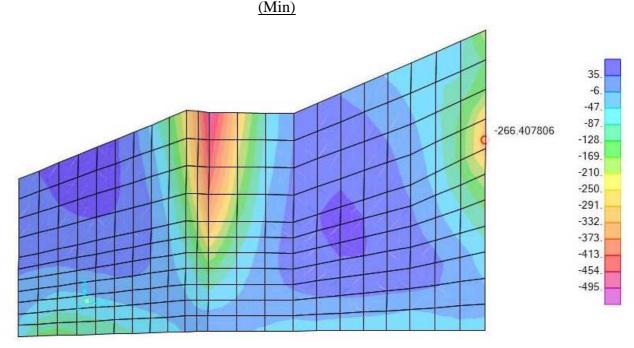

8.6.1.1 Risultati SLU

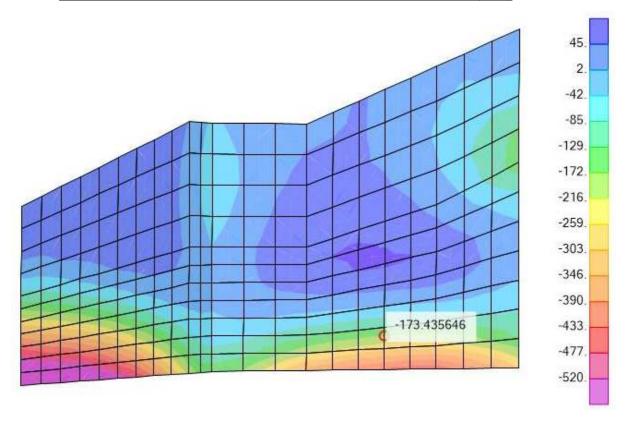
I valori riportati nelle figure seguenti sono espressi in kN·m/m (momenti) e in kN/m (forze).

MOMENTO M11 - COMBINAZIONE SISMICA INVILUPPO (Min)



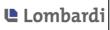
MOMENTO M11 - SPIGOLO - COMBINAZIONE SISMICA INVILUPPO (Min)



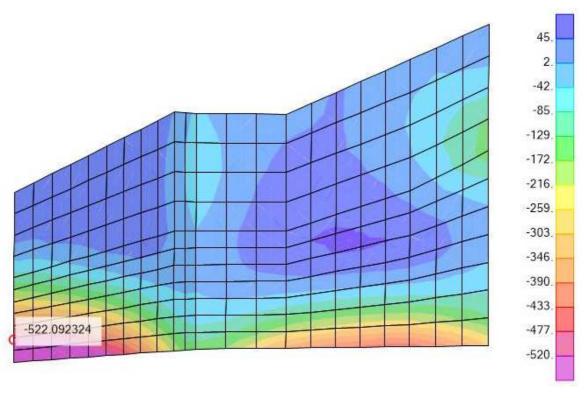


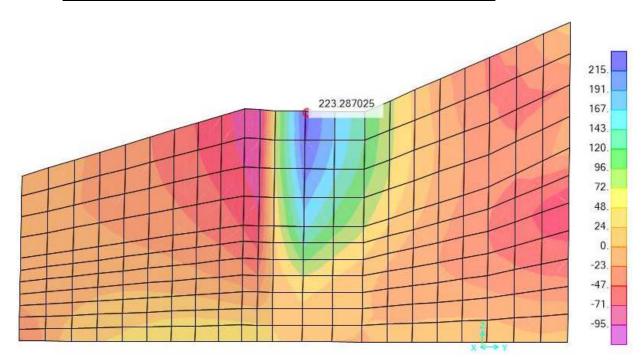
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

MOMENTO M11 - RACCORDO - COMBINAZIONE SISMICA INVILUPPO



MOMENTO M22 - COMBINAZIONE SISMICA INVILUPPO (Min)

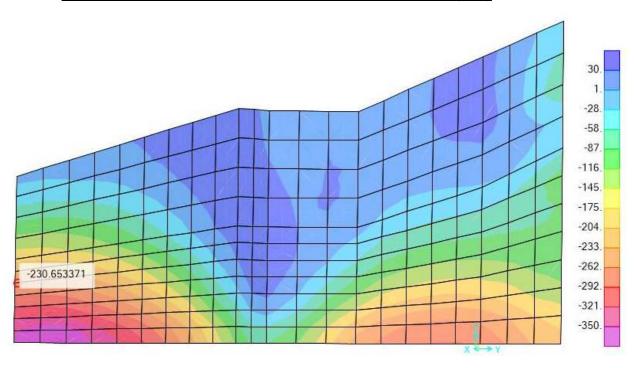


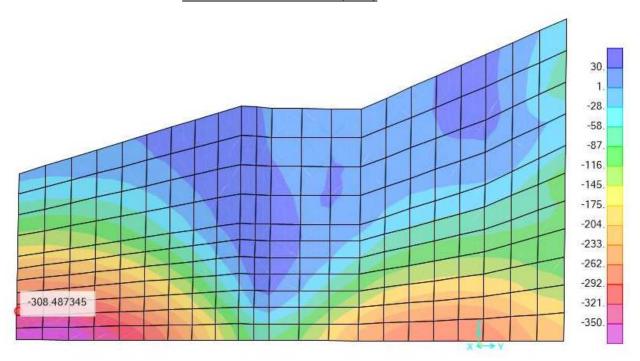


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

MOMENTO M22 - PORZIONE INFERIORE DI MONTE - COMBINAZIONE SISMICA INVILUPPO (Min)

TAGLIO V13 - COMBINAZIONE SISMICA INVILUPPO (Max)



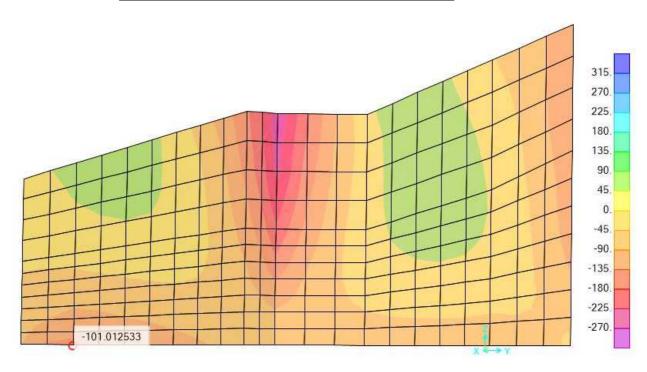


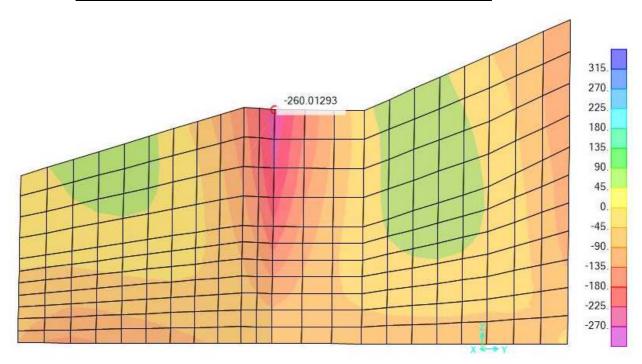
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

TAGLIO V23 – COMBINAZIONE SISMICA INVILUPPO (Min)

<u>TAGLIO V23 – PORZIONE INFERIORE DI MONTE - COMBINAZIONE</u> <u>SISMICA INVILUPPO (Min)</u>

ENGINEERING



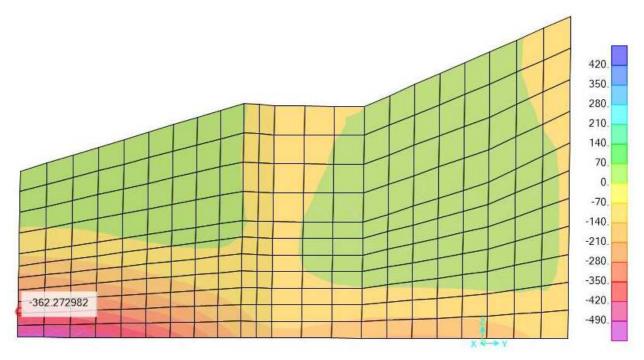

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.1.2 Risultati SLE

MOMENTO M11 - COMBINAZIONE SLE RARA

MOMENTO M11 - SPIGOLO - COMBINAZIONE SLE RARA



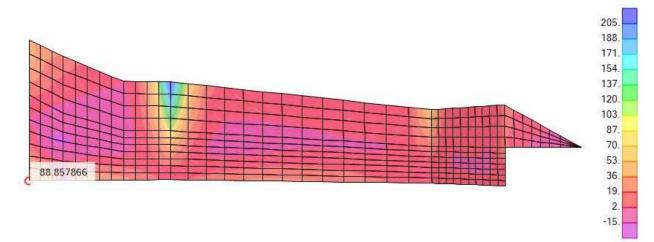


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

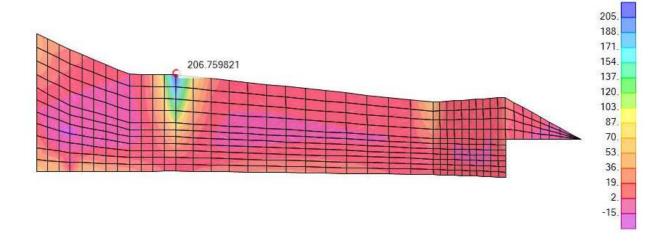
MOMENTO M22 - COMBINAZIONE SLE RARA

MOMENTO M22 – PORZIONE INFERIORE DI MONTE - COMBINAZIONE SLE RARA

ENGINEERING



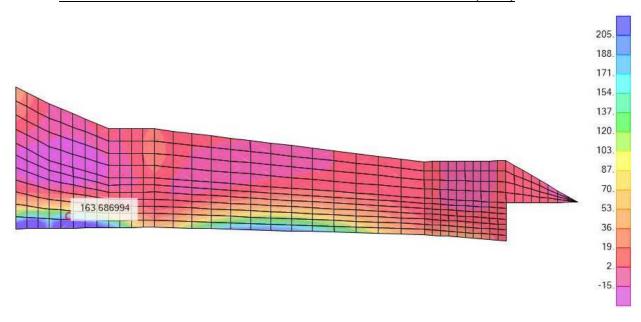
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

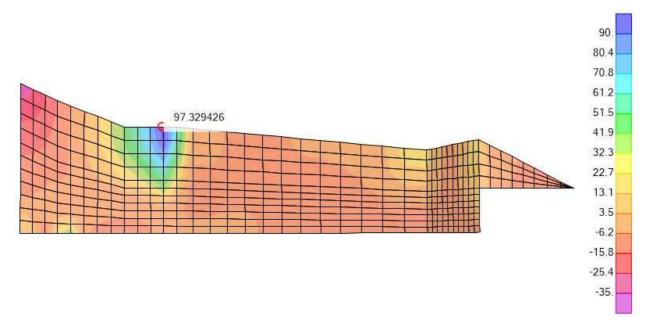

8.6.2 Muro di sponda sp. 0.8 m lato valle

8.6.2.1 Risultati SLU

MOMENTO M11 - COMBINAZIONE SISMICA INVILUPPO (Max)

MOMENTO M11 – SPIGOLO - COMBINAZIONE SISMICA INVILUPPO (Max)

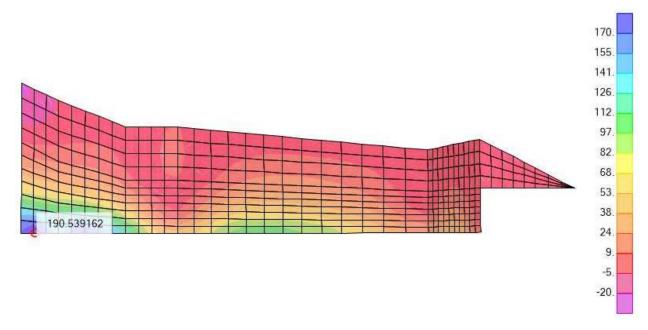




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

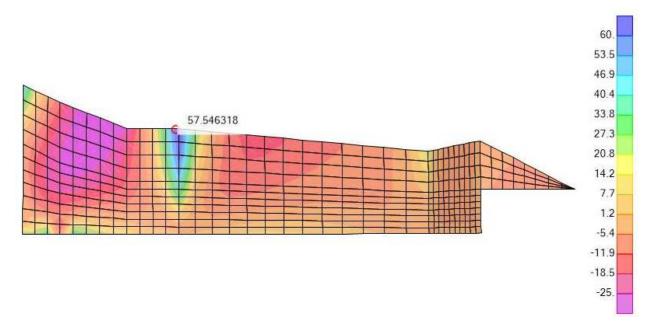
MOMENTO M22 - COMBINAZIONE SISMICA INVILUPPO (Max)

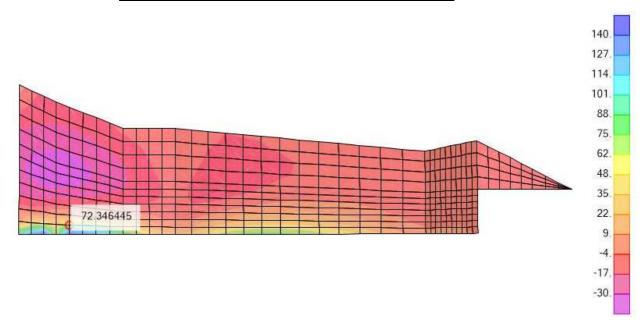
TAGLIO V13 - COMBINAZIONE SISMICA INVILUPPO (Max)



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

TAGLIO V23 - COMBINAZIONE SISMICA INVILUPPO (Max)



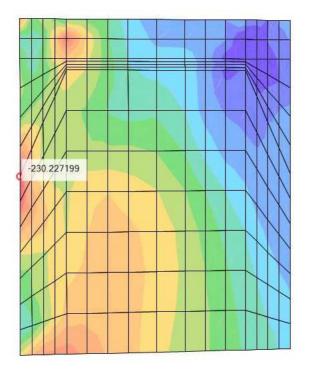

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.2.2 Risultati SLE

MOMENTO M11 - COMBINAZIONE SLE RARA

MOMENTO M22 - COMBINAZIONE SLE RARA

22 1 -21 -42 -63. -85

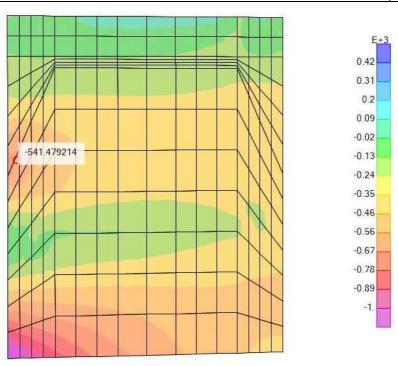

-106 -127 -148. -170 -191 -212 -234 -255

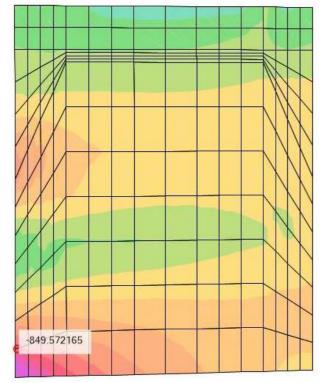
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

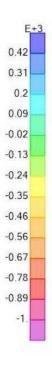
8.6.3 Muro di sponda sp. 1.5 m

8.6.3.1 Risultati SLU

MOMENTO M11 - COMBINAZIONE SISMICA INVILUPPO (Min)

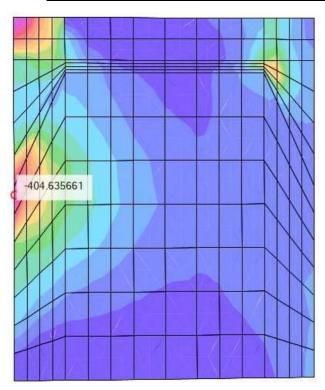


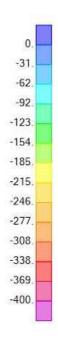

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

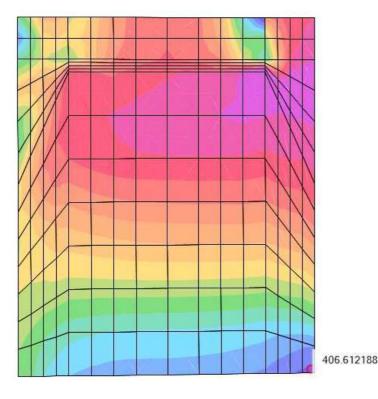

MOMENTO M22 - COMBINAZIONE SISMICA INVILUPPO (Min)

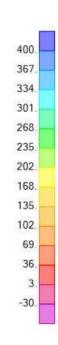
MOMENTO M22 - PORZIONE INFERIORE - COMBINAZIONE SISMICA

INVILUPPO (Min)

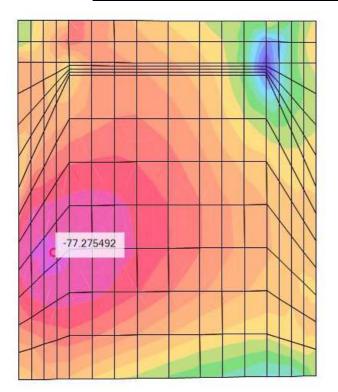


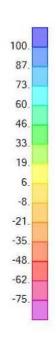



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


TAGLIO V13 – COMBINAZIONE SISMICA INVILUPPO (Min)

TAGLIO V23 – COMBINAZIONE SISMICA INVILUPPO (Min)

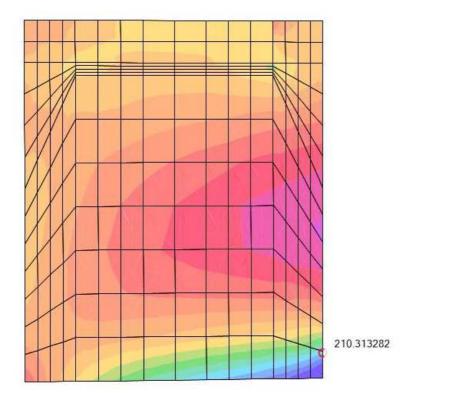


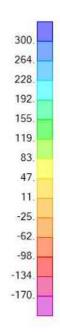


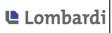
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.3.2 Risultati SLE

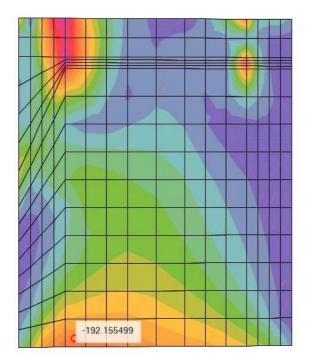
MOMENTO M11 – COMBINAZIONE SLE RARA

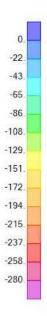





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

MOMENTO M22 – COMBINAZIONE SLE RARA

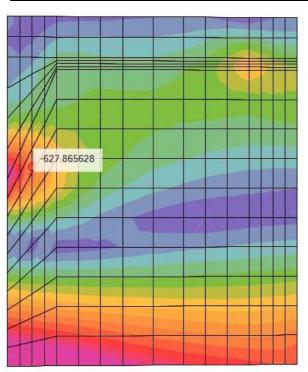


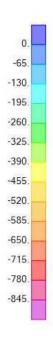

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

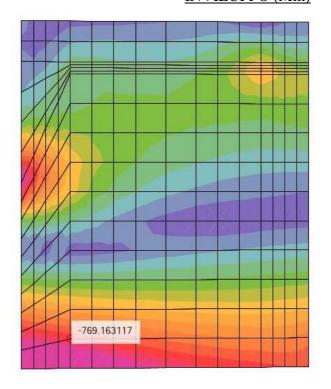
8.6.4 Pile

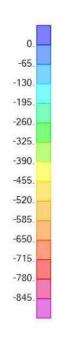
8.6.4.1 Risultati SLU

MOMENTO M11 – COMBINAZIONE SISMICA INVILUPPO (Min)

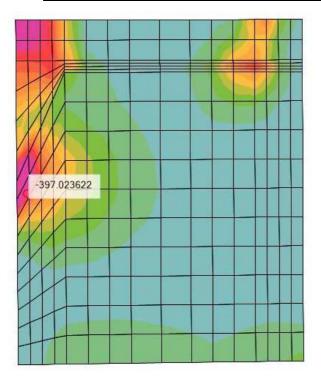


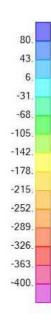


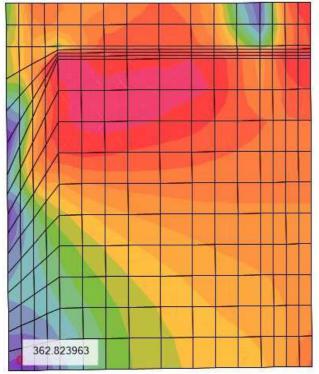

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

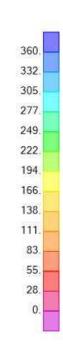

MOMENTO M22 – COMBINAZIONE SISMICA INVILUPPO (Min)

<u>MOMENTO M22 – PORZIONE INFERIORE - COMBINAZIONE SISMICA</u> INVILUPPO (Min)

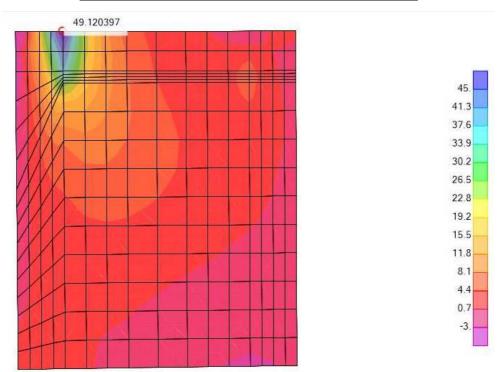


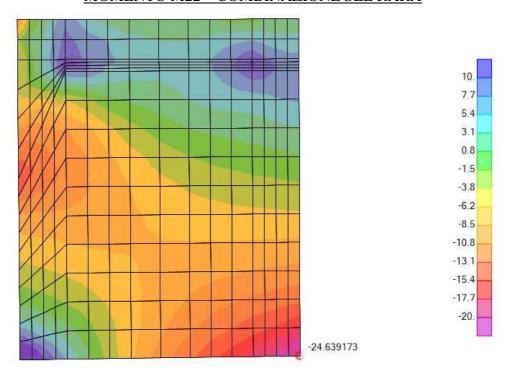



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


TAGLIO V13 - COMBINAZIONE SISMICA INVILUPPO (Min)

TAGLIO V23 - COMBINAZIONE SISMICA INVILUPPO (Min)



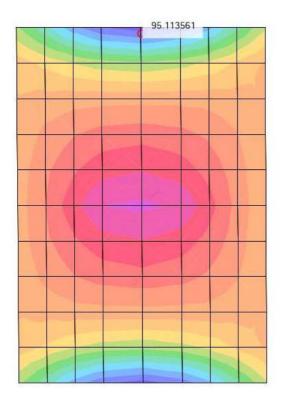

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

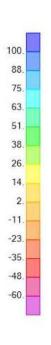
8.6.4.2 Risultati SLE

MOMENTO M11 – COMBINAZIONE SLE RARA

MOMENTO M22 – COMBINAZIONE SLE RARA

ENGINEERING

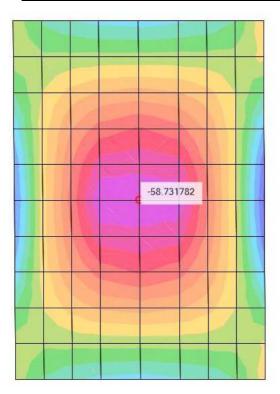


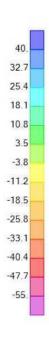

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

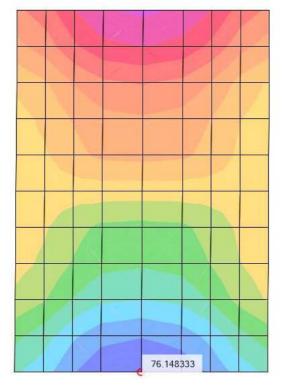
8.6.5 Soletta di copertura

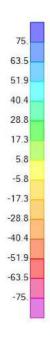
8.6.5.1 Risultati SLU

MOMENTO M11 – COMBINAZIONE SLU FONDAMENTALE

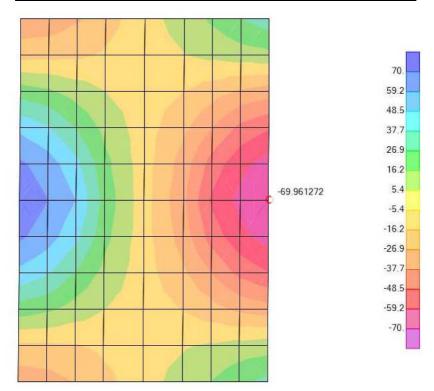


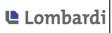



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


MOMENTO M22 – COMBINAZIONE SLU FONDAMENTALE

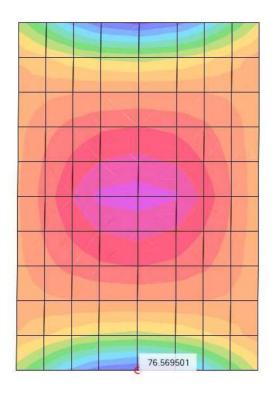
TAGLIO V13 – COMBINAZIONE SLU FONDAMENTALE

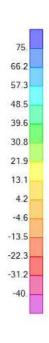




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

TAGLIO V23 – COMBINAZIONE SLU FONDAMENTALE

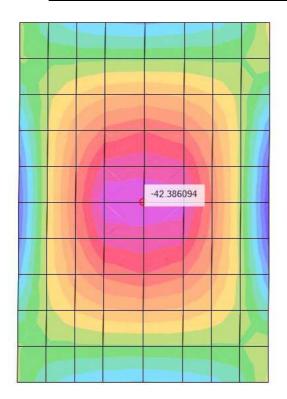


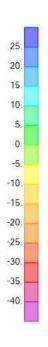


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

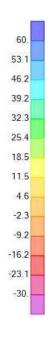
8.6.5.2 Risultati SLE

<u>MOMENTO M11 – COMBINAZIONE SLE RARA</u>

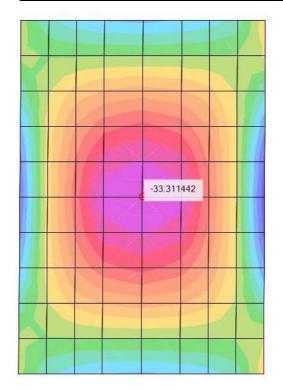


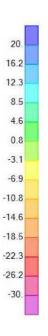


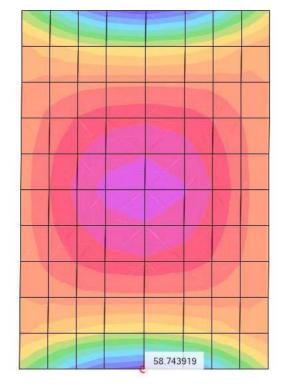
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

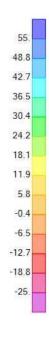

MOMENTO M22 – COMBINAZIONE SLE RARA

MOMENTO M11 - COMBINAZIONE SLE FREQUENTE

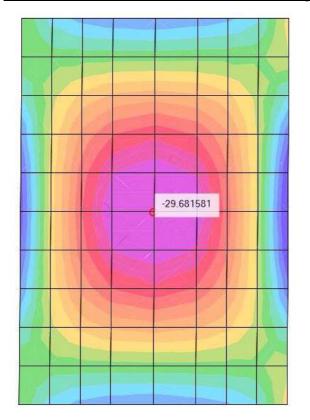


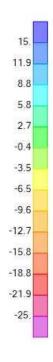


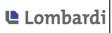

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


MOMENTO M22 – COMBINAZIONE SLE FREQUENTE

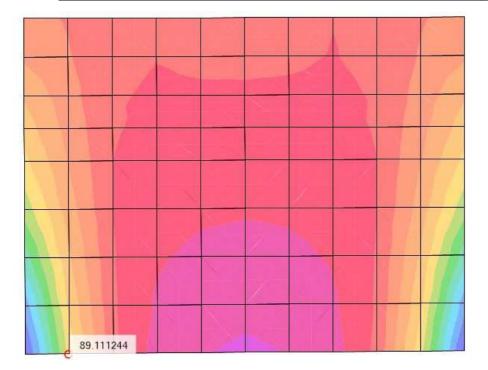
MOMENTO M11 – COMBINAZIONE SLE QUASI PERMANENTE

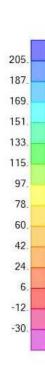





MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

<u>MOMENTO M22 – COMBINAZIONE SLE QUASI PERMANENTE</u>

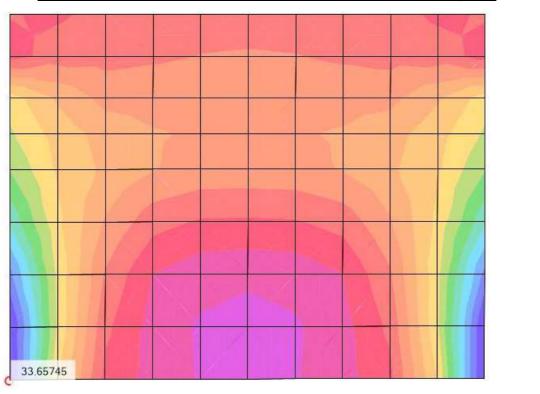


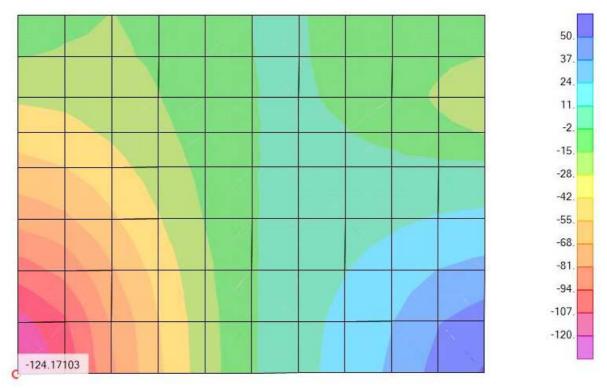

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.6 Trave frontale

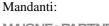

8.6.6.1 Risultati SLU

MOMENTO M11 – COMBINAZIONE SISMICA INVILUPPO (Max)

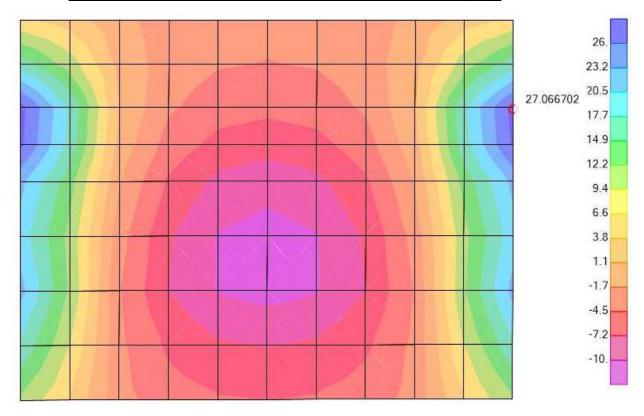



30 27.3 24.6 21.9 19.2 16.5 13.8 11.2 8.5 5.8 3.1 0.4 -2.3-5.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


MOMENTO M22 – COMBINAZIONE SISMICA INVILUPPO (Max)

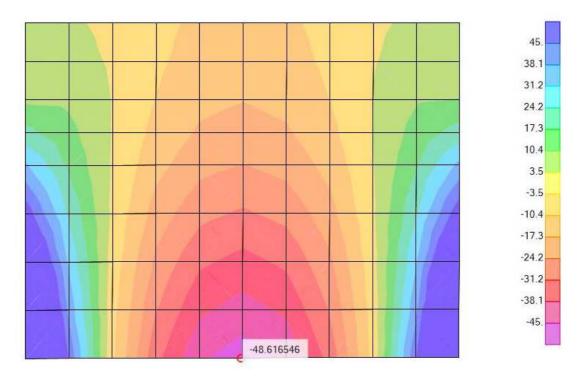
TAGLIO V13 – COMBINAZIONE SISMICA INVILUPPO (Min)

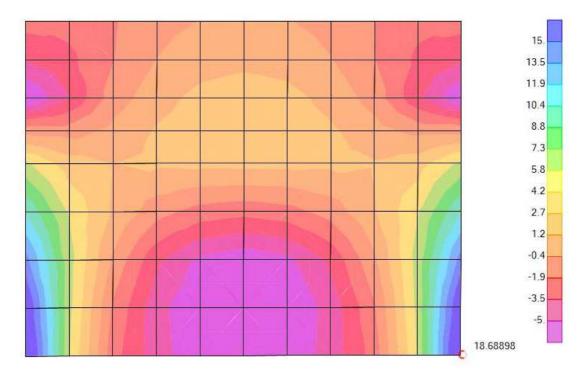




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

TAGLIO V23 – COMBINAZIONE SISMICA INVILUPPO (Max)




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.6.6.2 Risultati SLE

MOMENTO M11 - COMBINAZIONE SLE RARA



MOMENTO M22 – COMBINAZIONE SLE RARA

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7 Verifiche effettuate

Sono astate effettuate le seguenti verifiche in accordo con la normativa:

- RESISTENZA FLESSIONALE (SLU) [NTC 2018 Par. 4.1.2.3.4];
- RESISTENZA NEI CONFRONTI DI SOLLECITAZIONI TAGLIANTI (SLU) [NTC 2018 – Par. 4.1.2.3.5];
- FESSURAZIONE (SLE) [NTC 2018 Par. 4.1.2.2.2];
- TENSIONI DI ESERCIZIO (SLE) [NTC 2018 Par. 4.1.2.2.5].

I quantitativi di armatura necessari per garantire la resistenza strutturale del muro di sponda sp. 0.8 m lato monte sono i seguenti:

- Ripartitori orizzontali $\rightarrow \frac{15.4 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.19\%$
- Armatura verticale $\rightarrow \frac{15.4 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.19\%$
- Armatura verticale di rinforzo $\rightarrow \frac{53.08 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.66\%$ (da aggiungere allo 0.19% nella porzione inferiore di muro)

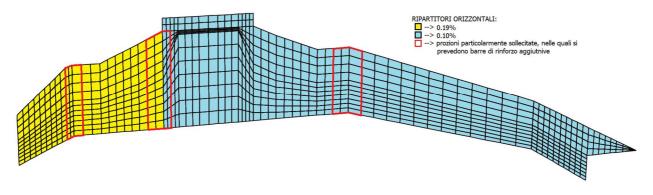
Si specifica che in corrispondenza dello spigolo e del raccordo con il muro di sponda sp. 1.5 m si prevede un raddoppio dei ripartitori orizzontali (\Rightarrow 0.38%).

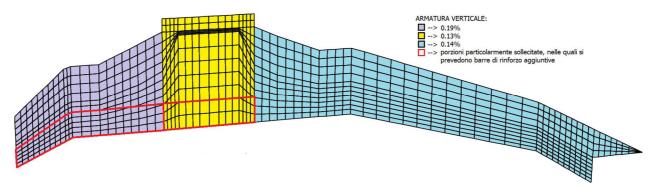
I quantitativi di armatura necessari per garantire la resistenza strutturale del muro di sponda sp. 0.8 m lato valle sono i seguenti:

- Ripartitori orizzontali $\rightarrow \frac{7.86 \ cm_{ferro}^2}{8000 \ cm_{cls}^2} \cong 0.10\%$
- Armatura verticale $\Rightarrow \frac{11.3 \ cm_{ferro}^2}{8000 \ cm_{elg}^2} \cong 0.14\%$

Si specifica che in corrispondenza dello spigolo si prevede un raddoppio dei ripartitori orizzontali (\Rightarrow 0.20%).

I quantitativi di armatura necessari per garantire la resistenza strutturale del muro di sponda sp. 1.5 m sono i seguenti:




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

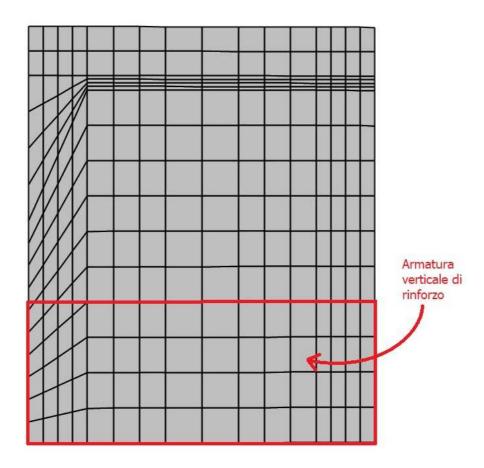
- Ripartitori orizzontali $\rightarrow \frac{15.4 \ cm_{ferro}^2}{15000 \ cm_{cls}^2} \approx 0.10\%$
- Armatura verticale $\Rightarrow \frac{20.1 \ cm_{ferro}^2}{15000 \ cm_{cls}^2} \cong 0.13\%$
- Armatura verticale di rinforzo $\rightarrow \frac{12.58 \, cm_{ferro}^2}{15000 \, cm_{cls}^2} \cong 0.08\%$ (da aggiungere allo 0.13% nella porzione inferiore di muro)

I quantitativi di armatura orizzontale previsti nei muri perimetrali sono riassunti nella figura seguente.

I quantitativi di armatura verticale previsti nei muri perimetrali sono invece riportati di seguito.

I quantitativi di armatura necessari per garantire la resistenza strutturale delle pile sono i seguenti:

- Ripartitori orizzontali $\rightarrow \frac{15.4 \ cm_{ferro}^2}{15000 \ cm_{cls}^2} \cong 0.10\%$
- Armatura verticale $\rightarrow \frac{24.12 \ cm_{ferro}^2}{15000 \ cm_{cls}^2} \cong 0.16\%$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Armatura verticale di rinforzo $\rightarrow \frac{4.02 \ cm_{ferro}^2}{15000 \ cm_{cls}^2} \cong 0.03\%$ (da aggiungere allo 0.16% nella porzione inferiore della pila)

La porzione nella quale si prevede che vengano predisposte barre verticali aggiuntive è delimitata dal perimetro rosso nella figura che segue.

I quantitativi di armatura necessari per garantire la resistenza strutturale della soletta sono i seguenti:

- Armatura longitudinale $\rightarrow \frac{11.3 \ cm_{ferro}^2}{5000 \ cm_{cls}^2} \cong 0.23\%$
- Armatura trasversale $\rightarrow \frac{7.86 \ cm_{ferro}^2}{5000 \ cm_{clc}^2} \cong 0.16\%$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


I quantitativi di armatura necessari per garantire la resistenza strutturale della trave frontale sono i seguenti:

- Ripartitori orizzontali $\rightarrow \frac{11.3 \ cm_{ferro}^2}{5000 \ cm_{cls}^2} \cong 0.23\%$
- Armatura verticale $\Rightarrow \frac{11.3 \ cm_{ferro}^2}{5000 \ cm_{cls}^2} \cong 0.23\%$

I calcoli sono riportati nei paragrafi che seguono.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.1 Muro di sponda sp. 0.8 m lato monte

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	145.00		223.00
RARA	101.00		
FREQ.	101.00		
Q. PERM.	101.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [MONTE] - Ripartitori orizzontali

Caratteristiche dei materiali

- Cls R_{ck} ≥ 40 MPa

- CIS R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

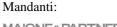
210'000

- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\begin{array}{rcl} \beta_1 = & 0.80952 \\ \beta_2 = & 0.41597 \\ \epsilon_{c,2} = & 0.002 \\ \epsilon_{cu} = & 0.0035 \\ \epsilon_{uk} = & 0.075 \\ \epsilon_{yd} = f_{yd} \, / \, E_S = & 0.00186 \\ \epsilon_{ud} = 0.9 \, ^* \, \epsilon_{uk} = & 0.0675 \end{array}$

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm




MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 223.00 V_{Ed, base} = 7.70 cm² 7.70 A_{S,tesa} = cm² con: $b_w = b =$ 100 cm h = 80 cm 3 77 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 189.04 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0010 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0.2 f_{cd} =$ 2.82 MPa < 0.00 kΝ $N_{Ed} =$ $A_{C} = b * h =$ 8'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 249.44 kNcon

$$v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} = 0.324$$

$V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$	249.44	kN	>	$V_{Ed} =$	223.00	kN	
---------------------------------------	--------	----	---	------------	--------	----	--

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

		Verifica a flessi	one			
	: 45.20	1.11				
M _{Ed} =	145.00	kNm				
N _{Ed} =	0.00	kN				
dove:					7.70	2
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con: b =	100	cm		h =	80	cm
b = d' =	3	cm		n = d =	80 77	cm
u –	S	cm		u –	11	cm
$x_1 = \left[\varepsilon_{c_{11}} / \left(\varepsilon_{c_{11}} - \varepsilon_{v_{1}} \right) \right] * d' =$	6.4	cm				
MT = feen / feen - Ann -	U. .	VII.				
- Ipotesi x < x ₁ :						
$\epsilon_{\text{c}} = \epsilon_{\text{cu}} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura c	ompressa in ca	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arr	matura tesa alla	a tensione f _{yo}
		_				
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	- $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente pe		ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$	•					
dove: $\sigma'_S = E_S * \varepsilon'_S = E_S * \varepsilon_{cu} * (1 - d')$		`* *F *.				
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$					1010741000	^
11'422	x ²	+	264'539		-16'971'669	= 0
	2.87	cm MD=	<	x ₁ =	6.42	cm
$\sigma'_S = E_S * \epsilon_{cu} * (1 - d' / x) =$	-34.14	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + A _S	,,compr * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	228.79	kNm		M _{Ed} =	145.00	kNm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione rara								
Si è condotta la verifica delle tensioni di esercizio								
Verifica tensioni in esercizio								
$M_{Ed} =$	101.00	kNm						
$A_{S,compr} =$					7.70	cm ²		
A _{S,tesa} =					7.70	cm ²		
con:								
b =	100	cm		h =	80	cm		
d' =	3	cm		d =	77	cm		
n =	15							
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00							
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²						
$x = (n * A_{S,tot} / b) * [-1 + (1 - b) * (-1 + (1 - b))]$	+ (2 * b / (n ⁻	* A _{S,tot})) * (d + γ * c	$(1 + \gamma)^{0.5} =$		11.48	cm		
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		554'361	cm ⁴		
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	2.09	MPa	<	0,60 * f _{ck} =	14.94	MPa		
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	179.07	MPa	<	0,8 * f _{yk} =	360.00	MPa		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	101.00	kNm		
	$A_{S,compr} =$				
	A _{S,tesa} =				7
con:					
	b =	100	cm	h =	80
	d' =	3	cm	d =	77
	n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 15.39$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 11.48$$

$$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 554'361$$

$$cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 179.07$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff} \right)}{E_{s}} = \frac{0.00035}{0.00035} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00051$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2,5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x)/3 = 22.84 cm$$

$$h_{c,eff 3} = h/2 = 40.00 cm$$

6.68

$$h_{c,eff 3} = h / 2 = 40.00$$
 cm
 $A_{c,eff} = min (h_{c,eff i}) * b = 750.00$ cm²
 $\rho_{eff} = A_s / A_{c,eff} = 0.010$

$$\begin{aligned} \alpha_{\rm e} &= {\rm E_s \, / \, E_{cm}} = & 6.68 \\ \Delta_{\rm smax} &= k_3 \cdot d^{'} + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\it eff}} = & 33.39 \end{aligned} \qquad {\rm cm}$$

$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.171	mm	<	W _{d.max} =	0.200	mm
a om omax			_	ajiiian		

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	2.09	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	179.07	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Si è condotta la verifica di f	essurazione					
		Verifica a fes	surazione			
$M_{Ed} =$	101.00	kNm				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E} =$	179.07	MPa				
$\varepsilon_{sm} = \frac{P_{eff}}{E_s}$	0.00035	$< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00051			
$\kappa_{t} =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	22.84	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.010					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d' + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	33.39	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.171	mm	<	W _{d.max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M _{ED}	N _{ED} [kN/m]	T _{ED}
SLU	446.00		223.00
RARA	260.00		
FREQ.	260.00		
Q. PERM.	260.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [MONTE] - Ripartitori orizzontali SPIGOLO

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

R _{ck} =	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
α_{cc} =	0.85	
γ _C =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
f_{bd} = 2.25 * f_{ctk} / γ_{C} =	2.69	MPa
$f_{\rm C} = 22000 * (f_{\rm cm} / 10)^{0.3} =$	31'447	MPa
50C		

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

- Acciaio B450C

$$f_{y\, k} = 450.00$$
 MPa $f_{y\, d} = f_{y\, k} / \gamma_S = 391.30$ MPa $\gamma_S = 1.15$ $E_S = 210000$ MPa

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 $\beta_2 =$ 0.002 0.0035 0.075 $\varepsilon_{iik} =$ $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\varepsilon_{ud} = 0.9 * \varepsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 80 cm d' = 3 cm 77 cm

Mandataria:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 223.00 V_{Ed, base} = 15.39 cm² A_{S,tesa} = 15.39 cm² con: $b_w = b =$ 100 cm h = 80 cm 3 77 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 238.18 kNcon: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0020 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0,2 f_{cd} =$ 2.82 MPa < 0.00 kN $N_{Ed} =$ $A_{C} = b * h =$ 8'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 249.44 kNcon $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.324 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$ 249.44 kΝ > $V_{Ed} =$ 223.00 kΝ

		Verifica a fless	one			
	440.00	LNI				
M _{Ed} =	446.00	kNm				
N _{Ed} =	0.00	kN				
dove:					45.20	2
A _{S,compr} =					15.39	cm ²
$A_{S,tesa} =$					15.39	cm ²
con:	400				00	
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{\rm c} = \epsilon_{\rm cu} =$	0.0035					
$\sigma'_{s} < f_{yd}$				armatura (compressa in c	ampo elastico
	391.30	MPa			rmatura tesa ali	•
$N_{Rd1} = \beta_1 * b * x_1 *$	f _{cd} + (A _{S,compr}	- A _{S,tesa}) * f _{yd} =	733	kN		
- Calcolo del momento resistente pe	rN _{Rd} < N _{Rd1} (ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$						
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d')$						
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$		a) * x - ε _{cu} * E _S * α	d' * A _{S.compr} = 0			
11'422	x ²	+	529'078	х	-33'943'338	= 0
x =	3.61	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$		MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + A _S	s,compr * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	: - β ₂ * x) =	
M _{Rd} =	451.93	kNm	>	M _{Ed} =	446.00	kNm

VERIFICA STATO LIMITE DI ES	FRCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi			raia			
Or o derivative in vermed delic terior		rifica tensioni in e	esercizio			
M _{Ed} =	260.00	kNm				
A _{S,compr} =					15.39	cm ²
A _{S,tesa} =					15.39	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	30.79	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	$(1) / (1 + \gamma)^{0.5}] =$		15.15	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		1'033'313	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	3.81	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	233.44	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

$M_{Ed} =$	260.00	kNm		
A _{S,compr} =				15.39
$A_{S,tesa} =$				15.39
con:				
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 30.79 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 15.15 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 1'033'313 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 233.44$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{crm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00084}{0.00084} \ge 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00067$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x)/3 = 21.62 cm$$

$$h_{c,eff 3} = h/2 = 40.00 cm$$

$$A_{c,eff} = min (h_{c,eff i}) * b = 750.00 cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.021$$

$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

21.80

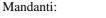
$ ho_{ ext{ iny eff}}$						
$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.183	mm	≤	$W_{d,max} =$	0.200	mm

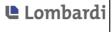
cm

Verifica tensioni in esercizio

$\sigma_c = M_{Ed} * x / J_{fess} =$	3.81	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	233.44	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

 $\Delta_{s\max} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{} =$





Si è condotta la verifica di	fessurazione					
		Verifica a fes	surazione			
M _{Ed} =	260.00	kNm				
A _{S,compr} =					15.39	cm ²
A _{S,tesa} =					15.39	cm ²
on:	100			h	00	
b = d' =	100 3	cm		h = d =	80 77	cm
u = n =	3 15	CIII		u =	11	cm
11 =	13					
$\gamma = A_{S.compr} / A_{S.tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	30.79	cm ²				
-,		/ (n * A _{S.tot})) * (d + γ *				
$J_{fess} = b * x^3 /$	3 + n * A _{S,tesa} *	$(d - x)^2 + n * A_{S,compr}$	* $(x - d')^2 =$		1'033'313	cm ⁴
	3 + n * A _{S,tesa} *	(d - x) ² + n * A _{S,compr}	* (x - d') ² =		1'033'313	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	233.44				1'033'313	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	233.44	MPa			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$	233.44	MPa			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{r} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff \ 1} = 2.5 * (h-d) =$ $h_{c,eff \ 2} = (h-x) / 3 =$	233.44 0.00084 0.4	MPa $\geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{s} \frac{f_{clm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff 1} = 2,5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$ $h_{c,eff 3} = h / 2 =$	233.44 0.00084 0.4 7.50	MPa $\geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (l + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $\kappa_{t} = \frac{h_{c,eff 1} = 2,5 * (h-d) =}{h_{c,eff 2} = (h-x) / 3 =}$ $h_{c,eff 3} = h / 2 =$ $A_{c,eff 6} = min (h_{c,eff i}) * b =$	233.44 0.00084 0.4 7.50 21.62 40.00 750.00	MPa $\geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (l + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $K_{t} = \frac{h_{c,eff \ 1} = 2.5 * (h - d) =}{h_{c,eff \ 2} = (h - x) / 3 =}$ $h_{c,eff \ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff \ i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$	233.44 0.00084 0.4 7.50 21.62 40.00 750.00 0.021	MPa $ \geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = $ cm cm cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (l + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $\kappa_{t} = \frac{h_{c,eff \ 1} = 2,5 * (h-d) =}{h_{c,eff \ 2} = (h-x) / 3 =}$ $h_{c,eff \ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff \ i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$ $\alpha_{e} = E_{s} / E_{cm} =$	233.44 0.00084 0.4 7.50 21.62 40.00 750.00	MPa $ \geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = $ cm cm cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (1 + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $K_{t} = \frac{h_{c,eff \ 1} = 2.5 * (h-d) =}{h_{c,eff \ 2} = (h-x) / 3 =}$ $h_{c,eff \ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff \ i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$	233.44 0.00084 0.4 7.50 21.62 40.00 750.00 0.021	MPa $ \geq 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = $ cm cm cm			1'033'313	cm ⁴

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	266.00		223.00
RARA	101.00		
FREQ.	101.00		
Q. PERM.	101.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [MONTE] - Ripartitori orizzontali RACCORDO

	Caratteri	stiche	dei	material
--	-----------	--------	-----	----------

- Cls R_{ck} ≥ 40 MPa

			- 013 IVCK 2 70 IVII a
	MPa	30.00	R _{ck} =
	MPa	24.90	$f_{ck} = 0.83 * R_{ck} =$
	MPa	14.11	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$
coe		0.85	α_{cc} =
coefficiente		1.5	γ _C =
	MPa	32.90	$f_{cm} = f_{ck} + 8 =$
	MPa	2.56	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$
	MPa	1.79	$f_{ctk} = 0.7 * f_{ctm} =$
	MPa	1.19	$f_{\rm ctd} = f_{\rm ctk} / \gamma_{\rm C} =$
	MPa	2.69	f_{bd} = 2.25 * f_{ctk} / γ_C =
	MPa	31'447	$E_C = 22000 * (f_{cm} / 10)^{0.3} =$
			- Acciaio B450C
	MPa	450.00	$f_{yk} =$
	MPa	391.30	$f_{yd} = f_{yk} / \gamma_S =$
coeffic		1.15	γ _S =
	MPa	210'000	E _S =

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\begin{array}{rcl} \beta_1 = & 0.80952 \\ \beta_2 = & 0.41597 \\ \epsilon_{c,2} = & 0.002 \\ \epsilon_{cu} = & 0.0035 \\ \epsilon_{uk} = & 0.075 \\ \epsilon_{yd} = f_{yd} / E_S = & 0.00186 \\ \epsilon_{ud} = 0.9 * \epsilon_{uk} = & 0.0675 \end{array}$

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 80 cm d' = 3 cm d = 77 cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

249.44

Si sono condotte la v	verifica al tagli	o e alla fle					
			Verifica a ta	<u>iglio</u>			
lemento senza armat	ure trasversali	resistenti a	ı taglio				
	V _{Ed, base} =	223.00	kN				
	$A_{S,compr} =$					15.39	cm ²
	$A_{S,tesa} =$					15.39	cm ²
on:							
	$b_w = b =$	100	cm		h =	80	cm
	d' =	3	cm		d =	77	cm
V	- [0 18 * k * (10	0 * α. * f. \	^{1/3} / γ _C + 0.15 * σ ₀	1*h *d-		238.18	kN
* R0 1	- [0.10 % (10	о рт скл	, 10 . 0.10	:p1		200.10	
on:			_				
k = 1 -	+ (200 / d) ^{1/2} =	1.51	≤	2			
ρ ₁ =	$A_{SI} / (b_w * d) =$	0.0020	≤	0.02			
a _{SI} = armatura longitudin	nale tesa						
σ _i	$_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
	N _{Ed} =	0.00	kN				
	$A_C = b * h =$	8'000	cm ²				
I _{Ed} = forza longitudinale	di compressione	nella sezio	one dovuta ai cari	chi o alla preco	mpressione		
	V	O 1E	* ~ * b * d			240.44	kN
	$v_{Rd2} = 0$	v _{min} + 0.15	* σ_{cp}) * b_w * $d =$			249.44	KIN
on							
	* $k^{3/2}$ * $f_{ck}^{1/2}$ =						

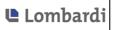
kΝ

>

 $V_{Ed} =$

223.00

kΝ


 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

		Verifica a flessi	ono			
		vernica a nessi	<u>one</u>			
M _{Ed} =	266.00	kNm				
N _{Ed} =	0.00	kN				
dove:	0.00	KIN				
A _{S,compr} =					15.39	cm ²
$A_{S,tesa} =$					15.39	cm ²
con:					10.00	OIII
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
_	-	-				-
$x_1 = [\epsilon_{GU} / (\epsilon_{GU} - \epsilon_{Vd})] * d' =$	6.4	cm				
, , , , , , , , , , , , , , , , , , , ,						
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura c	ompressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa al	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	$-A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente per		ovvero x < x₁)				
β_1 * b * x * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ *	*					
dove: $\sigma'_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d')$						
β_1 * f_{cd} * b * x^2 - $(N_{Ed}$ - ϵ_{cu} * E_S * $A_{S,comp}$	r + f _{yd} * A _{S,tesa}	a) * x - ε _{cu} * E _S * c	$' * A_{S,compr} = 0$			
11'422	x ²	+	529'078	X	-33'943'338	= 0
x =	3.61	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$	123.67	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (I$	n / 2 - d') + A _S	s,compr * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	451.93	kNm	>	M _{Ed} =	266.00	kNm

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi	oni di eser	cizio				
	<u>Ver</u>	rifica tensioni in	<u>esercizio</u>			
M _{Ed} =	101.00	kNm				
$A_{S,compr} =$					15.39	cm ²
A _{S,tesa} =					15.39	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	30.79	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - 1)]$	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * o	$d') / (1 + \gamma))^{0,5}] =$		15.15	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d - :	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		1'033'313	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	1.48	MPa	<	0,60 * f _{ck} =	14.94	MPa
~ _ w * M * (d v) / !	00.69	MPo		0 8 * f	360.00	MPo
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	90.68	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	101.00	kNm		
$A_{S,compr} =$				15.39
A _{S,tesa} =				15.39
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 30.79$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 15.15$$

$$J_{tess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 1033'313$$

$$cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 90.68$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00016}{c \cdot \frac{\sigma_{s}}{E_{s}}} = \frac{0.00026}{c \cdot \frac{\sigma_{s}}{E_{s}}} = 0.00026}$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x) / 3 = 21.62 cm$$

$$h_{c,eff 3} = h / 2 = 40.00 cm$$

$$A_{c,eff} = min (h_{c,eff i}) * b = 750.00 cm^{2}$$

$$\rho_{eff} = A_{s} / A_{c,eff} = 0.021$$

$$\alpha_{e} = E_{s} / E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 21.80 cm$$

W - s * A -	0.056	mm	 \M -	0.200	mm
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.056	111111	 $w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	1.48	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
		-				
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	90.68	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

Si è condotta la verifica di f	COOGIGZIOTIC	Verifica a fess	viroziono			
		<u>verifica a fess</u>	<u>surazione</u>			
M _{Ed} =	101.00	kNm				
	101.00	KINIII			15.39	cm ²
$A_{S,compr} = A_{S,tesa} =$					15.39	cm ²
on:					10.00	CIII
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
γ = A _{S,compr} / A _{S,tesa} =	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	30.79	cm ²				
, (n * A / h) * I	4 . /4 . /0 * h	o / (n * A _{S.tot})) * (d + γ * α	an / /4 · 330.51		15.15	cm
x = (11 As,tot / b) [-	1 + (1 + (2 L) (II As, tot)) (u + y (1) / (T Y))] —		10.10	OIII
l _ b * v ³ / ·	2 . n * A	* (d x) ² + p * A	* (v = d\)2 =		110221212	4
$J_{fess} = b * x^3 / 3$	3 + n * A _{S,tesa}	* $(d - x)^2 + n * A_{S,compr}$	* (x - d') ² =		1'033'313	cm ⁴
	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,compr}	* (x - d') ² =		1'033'313	cm ⁴
	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,compr}	* (x - d') ² =		1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{tess} =$			* (x - d') ² =		1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{tess} =$	90.68	MPa			1'033'313	cm ⁴
$\sigma_{\rm s} = {\rm n} * {\rm M}_{\rm Ed} * ({\rm d} - {\rm x}) / {\rm J}_{\rm tess} =$	90.68				1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$	90.68	MPa			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$	90.68 0.00016 0.4	MPa $< 0.6 \cdot \frac{\sigma_s}{E_s} =$			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff} = 2.5 * (h-d) =$	90.68 0.00016 0.4 7.50	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{s} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff 1} = 2,5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$	90.68 0.00016 0.4 7.50 21.62	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff 1} = 2,5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$ $h_{c,eff 3} = h / 2 =$	90.68 0.00016 0.4 7.50 21.62 40.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm cm			1'033'313	cm ⁴
$S_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $S_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $K_{t} =$ $h_{c,eff 1} = 2,5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$ $h_{c,eff 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff i}) * b =$	90.68 0.00016 0.4 7.50 21.62 40.00 750.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm			1'033'313	cm ⁴
$\begin{split} \sigma_{s} &= n * M_{Ed} * (d - x) / J_{fess} = \\ \varepsilon_{sm} &= \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \\ K_{t} &= \\ h_{c,eff 1} &= 2,5 * (h - d) = \\ h_{c,eff 2} &= (h - x) / 3 = \\ h_{c,eff 3} &= h / 2 = \\ A_{c,eff} &= min (h_{c,eff i}) * b = \\ \rho_{eff} &= A_{s} / A_{c,eff} = \end{split}$	90.68 0.00016 0.4 7.50 21.62 40.00 750.00 0.021	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm cm			1'033'313	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} = \frac{\kappa_{t}}{E_{s}} = \kappa_$	90.68 0.00016 0.4 7.50 21.62 40.00 750.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}} =$ cm cm cm			1'033'313	cm ⁴

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	173.00		231.00
RARA	141.00		
FREQ.	141.00		
Q. PERM.	141.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [MONTE] - Armatura verticale

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

CK =		
$R_{ck} =$	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
α_{cc} =	0.85	
γ_{C} =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{\rm ctd} = f_{\rm ctk} / \gamma_{\rm C} =$	1.19	MPa
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa
ciaio B450C		
$f_{yk} =$	450.00	MPa
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

- Ac

$$f_{yk} = 450.00$$
 MPa $f_{yd} = f_{yk} / \gamma_S = 391.30$ MPa $\gamma_S = 1.15$ E_S = 210'000 MPa

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

 $E_S =$

- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 \ ^* \ \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm

Mandataria:

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


249.44

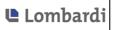
VERIFICA STATO LIMITE ULTIN		•				
Si sono condotte la verifica al tagli	o e alla fl					
		Verifica a ta	<u>glio</u>			
Elemento senza armature trasversali	resistenti a	a taglio				
V _{Ed, base} =	231.00	kN				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
$b_w = b =$	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
V _{Rd 1} = [0.18 * <i>k</i> * (10	0 * ~ * f)	1/3 / + 0 15 * -	1*b *d-		189.04	kN
VRd 1 = [0.10 X (10	Ο μ1 'ck <i>)</i>	/γς + 0.13 ο	pj b _w u =		103.04	KIN
con:						
$k = 1 + (200 / d)^{1/2} =$	1.51	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0010	≤	0.02			
A _{SI} = armatura longitudinale tesa		<u></u>				
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
N _{Ed} =	0.00	kN				
$A_C = b * h =$	8'000	cm ²				
N _{Ed} = forza longitudinale di compressione	nella sezio	one dovuta ai cario	chi o alla preco	mpressione		
$V_{Rd2} = 0$	v _{min} + 0.15	$^* \sigma_{cp}) ^* b_w ^* d =$			249.44	kN
con						
$V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$	0.324					
v _{min} – 0.000 // lck –	0.024					

 $V_{Ed} =$

231.00

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

		Verifica a flession	<u>one</u>			
M	172.00	LNIm				
M _{Ed} =	173.00	kNm				
N _{Ed} =	0.00	kN				
A _{S,compr} =					7.70	cm ²
A _{S,compr} = A _{S,tesa} =					7.70	cm ²
Con:					7.70	CIII
b =	100	cm .		h =	80	cm
d' =	3	cm		d =	77	cm
	-	C		-	• •	<u> </u>
$x_1 = [\varepsilon_{cu} / (\varepsilon_{cu} - \varepsilon_{vd})] * d' =$	6.4	cm				
1 - 00 (02)						
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura co	ompressa in ca	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arn	matura tesa all	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	- $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente per		ovvero x < x ₁)				
β_1 * b * x * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ *	*					
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d')$						
β_1 * f_{cd} * b * x^2 - (N_{Ed} - ϵ_{cu} * E_S * $A_{S,comp}$						
11'422	x ²	+	264'539		-16'971'669	= 0
	2.87	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$	-34.14	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (h)$	ı / 2 - d') + A _S	,compr * σ's * (h / 2	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2 -	$\cdot \beta_2 * x) =$	
M _{Rd} =	228.79	kNm	>	M _{Ed} =	173.00	kNm



VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	rara					
Si è condotta la verifica delle tensi	oni di eser	cizio						
	<u>Ver</u>	rifica tensioni in e	esercizio esercizio					
M _{Ed} =	141.00	kNm						
$A_{S,compr} =$					7.70	cm ²		
A _{S,tesa} =					7.70	cm ²		
con:								
b =	100	cm		h =	80	cm		
d' =	3	cm		d =	77	cm		
n =	15							
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00							
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²						
$x = (n * A_{S,tot} / b) * [-1 + (1 - 1)]$	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	$[1] / (1 + \gamma))^{0,5}] =$		11.48	cm		
J _{fess} = b * x ³ / 3 + n *	$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 =$							
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	2.92	MPa	<	0,60 * f _{ck} =	14.94	MPa		
σ _s = n * M _{Ed} * (d - x) / J _{fess} =	249.98	MPa	<	0,8 * f _{y k} =	360.00	MPa		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

$M_{Ed} =$	141.00	kNm		
$A_{S,compr} =$				7.70
A _{S,tesa} =				7.70
on:				
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 15.39$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 11.48$$

$$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 554'361$$

$$cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 249.98$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00068}{E_{s}} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00071$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

$$h_{c,eff 2} = (h-x)/3 = 22.84 \quad cm$$

$$h_{c,eff 3} = h/2 = 40.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff i}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.010$$

$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 33.39 \quad cm$$

$W_d = \varepsilon_{sm} * \Delta_{smax} = $ 0.200 mm \geq $W_{d,max} =$ 0.200 mm	$W_d = \varepsilon_{sm} \Delta_{smax} =$	= <mark>0.200</mark>	mm	<u>></u>	$w_{d,max} =$	0.200	mm
--	--	----------------------	----	-------------	---------------	-------	----

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	2.92	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
		-				
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	249.98	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

Si è condotta la verifica di f	essurazione					
		Verifica a fe	ssurazione			
$M_{Ed} =$	141.00	kNm				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
$J_{fess} = b * x^3 / 3$	3 + n * A _{S,tesa} *	(d - x) ² + n * A _{S,comp}	, * (x - d') ² =		554'361	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	249.98	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}}$	0.00068	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00071			
$\kappa_{\rm t}$ =	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	22.84	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.010					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	33.39	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.238	mm	<	W _{d max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	522.00		308.00
RARA	362.00		
FREQ.	362.00		
Q. PERM.	362.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [MONTE] - Arm. vert. PORZIONE INFERIORE MONTE

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γs =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{y\,d} = f_{y\,d} \, / \, E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	80	cm
d' =	3	cm
d =	77	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Si sono condotte la verifica al tagli	o e alla fle	essione				
		Verifica a ta	<u>glio</u>			
Elemento senza armature trasversali	resistenti a	taglio				
V _{Ed, base} =	308.00	kN				
$A_{S,compr} =$					34.24	cm ²
A _{S,tesa} =					34.24	cm ²
con:						
$b_w = b =$	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$V_{Rd 1} = [0.18 * k * (100)]$,	" ³ / γ _C + 0.15 * σ _c	•		310.92	kN
$k = 1 + (200 / d)^{1/2} =$	1.51	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0044	≤	0.02			
A _{SI} = armatura longitudinale tesa		_				
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
$N_{Ed} =$	0.00	kN				
$A_C = b * h =$	8'000	cm ²				
N _{Ed} = forza longitudinale di compressione	e nella sezio	one dovuta ai cario	hi o alla preco	mpressione		
$V_{Rd2} = 0$	(v _{min} + 0.15	* σ _{cp}) * b _w * d =			249.44	kN
con						
$v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$	0.324					

kΝ

ENGINEERING

 $V_{Ed} =$

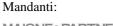
308.00

kΝ

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$


310.92

			•			
		Verifica a fless	<u>ione</u>			
M _{Ed} =	522.00	kNm				
$N_{Ed} = N_{Ed}$	0.00	kN				
dove:	0.00	NIN				
A _{S,compr} =					34.24	cm ²
A _{S.tesa} =					34.24	cm ²
con:						0
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura c	compressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		ar	matura tesa al	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f _{cd} + (A _{S,compr}	$_{r}$ - $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente pe		(ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$	-					
dove: $\sigma'_{S} = E_{S} * \varepsilon'_{S} = E_{S} * \varepsilon_{cu} * (1 - d')$		\+·. * - * - * -	" * 4			
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$				v	75'506'600	- 0
11'422 x =	x ²	+ cm	1'176'929	x x ₁ =	-75'506'609 6 42	= 0
$\sigma'_{S} = E_{S} * \varepsilon_{CII} * (1 - d' / x) =$		cm MPa	<	x ₁ =	6.42	cm
$U_S = E_S \mathcal{E}_{CU} (I - U / \lambda) - U_S$	242.09	IVIFa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + As	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	997.39	kNm	>	$M_{Ed} =$	522.00	kNm



VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi						
		rifica tensioni in e	esercizio			
M _{Ed} =	362.00	kNm				
$A_{S,compr} =$					34.24	cm ²
A _{S,tesa} =					34.24	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	68.49	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - C_{S,tot} / C_{S,tot} / C_{S,tot} / C_{S,tot} / C_{S,tot}]$	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * c	$(1 + \gamma)^{0.5} =$		20.18	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		2'083'863	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	3.51	MPa	<	0,60 * f _{ck} =	14.94	MPa
σ _s = n * M _{Ed} * (d - x) / J _{fess} =	148.06	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

$M_{Ed} =$	362.00	kNm		
$A_{S,compr} =$				34.24
$A_{S,tesa} =$				34.24
con:				
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 68.49 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 20.18 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 2'083'863 & cm^4 \end{split}$$

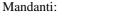
$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 148.06$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{0.00057}{E_{s}} \ge 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00042$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.087	mm	\leq	$W_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	3.51	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	148.06	MPa	<	0,8 * f _{yk} =	360.00	MPa



Si è condotta la verifica di	fessurazione					
		Verifica a fes	surazione			
M _{Ed} =	362.00	kNm				2
$A_{S,compr} =$					34.24	cm ²
A _{S,tesa} =					34.24	cm ²
con: b =	100	cm		h =	80	cm
b = d' =	3	cm		11 = d =	77	cm
u = n =		CIII		u =	11	CIII
11 =	13					
$\gamma = A_{S.compr} / A_{S.tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	68.49	cm ²				
J _{fess} = b * x ³ /	3 + n * A _{S,tesa} *	(d - x) ² + n * A _{S,comp}	. * (x - d') ² =		2'083'863	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	148.06	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}}$	0.00057	$\geq 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00042			
$\kappa_t =$	0.4					
$h_{c,eff\ 1} = 2,5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	19.94	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.046					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{smax} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{eff}} =$	15.41	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.087	mm	<u>≤</u>	W _{d,max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.2 Muro di sponda sp. 0.8 m lato valle

	M _{ED}	N _{ED} [kN/m]	T _{ED} [kN/m]
SLU	89.00		97.00
RARA	58.00		
FREQ.	58.00		
Q. PERM.	58.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [VALLE] - Ripartitori orizzontali

Caratteristiche dei materiali

- Cls R_{ak} > 40 MPa

- CIS R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{\rm ctd} = f_{\rm ctk} / \gamma_{\rm C} =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\begin{array}{rcl} \beta_1 = & 0.80952 \\ \beta_2 = & 0.41597 \\ \epsilon_{c,2} = & 0.002 \\ \epsilon_{cu} = & 0.0035 \\ \epsilon_{uk} = & 0.075 \\ \epsilon_{yd} = f_{yd} \, / \, E_S = & 0.00186 \\ \epsilon_{ud} = 0.9 \, ^* \, \epsilon_{uk} = & 0.0675 \end{array}$

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 80 cm d' = 3 cm d = 77 cm

Mandanti:

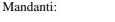
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 97.00 V_{Ed, base} = 3.93 cm² 3.93 A_{S,tesa} = cm² con: $b_w = b =$ 100 cm 80 cm 3 77 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 151.06 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0005 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0,2 f_{cd} =$ 2.82 MPa < 0.00 kN $N_{Ed} =$ $A_{C} = b * h =$ 8'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 249.44 kNcon $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.324

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

249.44

>


kΝ

 $V_{Ed} =$

97.00

kΝ

			Verifica a fless	ione			
		00.00	Liblian				
	M _{Ed} =	89.00	kNm				
dove:	N _{Ed} =	0.00	kN				
dove.	A _{S.compr} =					3.93	cm ²
	A _{S,tesa} =					3.93	cm ²
con:	/ S, tesa —					0.00	CIII
0011.	b =	100	cm .		h =	80	cm
	d' =	3	cm		d =	77	cm
	$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{vd})] * d' =$	6.4	cm				
	, , , , , , , , , , , , , , , , , , , ,						
- Ipotesi	x < x ₁ :						
	$\epsilon_{c}=\epsilon_{cu}=$	0.0035					
	$\sigma'_s < f_{yd}$				armatura	compressa in ca	ampo elastic
	$\sigma_s = f_{yd} =$	391.30	MPa		а	rmatura tesa all	a tensione f _y
	$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	$-A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo	o del momento resistente per	$N_{Rd} < N_{Rd1}$ (c	ovvero $x < x_1$)				
	* f_{cd} + σ'_{S} * $A_{S,compr}$ = $A_{S,tesa}$ * f_{cd}						
	$_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d' / c)$						
$\beta_1 * f_{cd} * k$	b * x^2 - (N_{Ed} - ε_{cu} * E_S * $A_{S,comp}$	+ f _{yd} * A _{S,tesa}) * x - ε _{cu} * E _S * α	$d' * A_{S,compr} = 0$			
	11'422	x ²	+	134'969	X	-8'659'015	= 0
	x =	2.23	cm	<	x ₁ =	6.42	cm
	$\sigma'_S = E_S * \epsilon_{cu} * (1 - d' / x) =$	-255.93	MPa				
				2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	! - β ₂ * x) =	
	$\sigma'_{S} = E_{S} * \epsilon_{CU} * (1 - d' / x) =$ $M_{Rd} = A_{S,tesa} * f_{yd} * (h)$			2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	! - β ₂ * x) =	

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione rara								
Si è condotta la verifica delle tensioni di esercizio								
Verifica tensioni in esercizio								
$M_{Ed} =$	58.00	kNm						
$A_{S,compr} =$					3.93	cm ²		
A _{S,tesa} =					3.93	cm ²		
con:								
b =	100	cm		h =	80	cm		
d' =	3	cm		d =	77	cm		
n =	15							
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00							
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	7.85	cm ²						
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ *	$d') / (1 + \gamma))^{0,5}] =$		8.60	cm		
$J_{\text{fess}} = b * x^3 / 3 + n * A$	A _{S,tesa} * (d - >	() ² + n * A _{S,compr}	$(x - d')^2 =$		298'639	cm ⁴		
$\sigma_c = M_{Ed} * x / J_{fess} =$	1.67	MPa	<	0,60 * f _{ck} =	14.94	MPa		
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	199.26	MPa	<	0,8 * f _{yk} =	360.00	MPa		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	58.00	kNm		
	$A_{S,compr} =$				3.93
	$A_{S,tesa} =$				3.93
con:					
	b =	100	cm	h =	80
	d' =	3	cm	d =	77
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 7.85 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 8.60 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 298'639 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 199.26$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{-0.00001}{-0.00001} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00057$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x)/3 = 23.80 cm$$

$$h_{c,eff 3} = h/2 = 40.00 cm$$

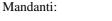
$$A_{c,eff} = min (h_{c,eff}) * b = 750.00 cm^{2}$$

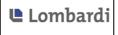
$\rho_{eff} = A_s / A_{c,eff} =$	0.005	
$\alpha_e = E_s / E_{cm} =$	6.68	
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	42.67	cm

$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.200	mm	>	Wd max =	0.200	mm
Wd - c _{sm} Δ _{smax} -	0.200	111111	_	wd,max -	0.200	111111

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.67	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	199.26	MPa	<	$0.8 * f_{yk} =$	360.00	MPa





Si è condotta la verifica di f	fessurazion	e				
		Verifica a fes	<u>surazione</u>			
$M_{Ed} =$	58.00	kNm				
$A_{S,compr} =$					3.93	cm ²
A _{S,tesa} =					3.93	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	7.85	cm ²				
$J_{fess} = b * x^3 / .$	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,compr}	* $(x - d')^2 =$		298'639	cm ⁴
$\sigma_{\rm s} = {\rm n} * {\rm M}_{\rm Ed} * ({\rm d} - {\rm x}) / {\rm J}_{\rm fess} =$	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,compr}	* (x - d) ² =		298'639	cm ⁴
$J_{fess} = b * x^{3} / I$ $\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$	199.26				298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} =$	199.26	MPa			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (1 + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff 1} = 2.5 * (h-d) =$	199.26	MPa			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{chi}}{\rho_{df}} \cdot (l + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $\kappa_{t} =$ $h_{c,eff 1} = 2,5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$	199.26 -0.00001	MPa $< 0.6 \cdot \frac{\sigma_s}{E_s}$			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} = \frac{h_{c,eff 1} = 2.5 * (h-d)}{h_{c,eff 2} = (h-x) / 3 =}$ $h_{c,eff 3} = h / 2 =$	199.26 -0.00001 0.4 7.50 23.80 40.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$ cm cm cm			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} = \frac{h_{c,eff 1} = 2,5 * (h-d) =}{h_{c,eff 2} = (h-x) / 3 =}$ $h_{c,eff 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff i}) * b =$	199.26 -0.00001 0.4 7.50 23.80 40.00 750.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$ cm cm			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (1 + \alpha_{e} \cdot \rho_{df})}{E_{s}} =$ $K_{t} =$ $h_{c,eff \ 1} = 2.5 * (h-d) =$ $h_{c,eff \ 2} = (h-x) / 3 =$ $h_{c,eff \ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff \ i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$	199.26 -0.00001 0.4 7.50 23.80 40.00 750.00 0.005	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$ cm cm cm			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $\kappa_{t} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{s}} =$ $\kappa_{c,eff 1} = 2.5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$ $h_{c,eff 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$ $\alpha_{e} = E_{s} / E_{cm} =$	199.26 -0.00001 0.4 7.50 23.80 40.00 750.00	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$ cm cm cm			298'639	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$ $\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{com}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E_{s}} =$ $K_{t} =$ $h_{c,eff \ 1} = 2,5 * (h-d) =$ $h_{c,eff \ 2} = (h-x) / 3 =$ $h_{c,eff \ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff \ i}) * b =$ $\rho_{eff} = A_{s} / A_{c,eff} =$	199.26 -0.00001 0.4 7.50 23.80 40.00 750.00 0.005	MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$ cm cm cm			298'639	cm ⁴

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	207.00		97.00
RARA	58.00		
FREQ.	58.00		
Q. PERM.	58.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [VALLE] - Ripartitori orizzontali SPIGOLO

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

R _{ck} =	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
α_{cc} =	0.85	
γ _C =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
f_{bd} = 2.25 * f_{ctk} / γ_{C} =	2.69	MPa
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa
4500		

coefficiente parziale di sicurezza relativo al calcestruzzo

coefficiente riduttivo per le azioni di lunga durata

- Acciaio B450C

$$f_{yk} = 450.00$$
 MPa $f_{yd} = f_{yk} / \gamma_S = 391.30$ MPa $\gamma_S = 1.15$ $E_S = 210'000$ MPa

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

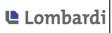
0.80952 0.41597 $\beta_2 =$ 0.002 0.0035 0.075 $\varepsilon_{iik} =$ $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\varepsilon_{ud} = 0.9 * \varepsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 80 cm d' = 3 cm 77 cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 97.00 V_{Ed, base} = 7.85 cm² A_{S,tesa} = 7.85 cm² con: $b_w = b =$ 100 cm h = 80 cm 3 77 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 190.32 kNcon: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0010 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0.2 f_{cd} =$ 2.82 MPa < 0.00 kN $N_{Ed} =$ $A_{C} = b * h =$ 8'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione

	$V_{Rd\ 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$	249.44 k	(N
con			

$$V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} = 0.324$$

$V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$	249.44	kN	>	$V_{Ed} =$	97.00	kN	
---------------------------------------	--------	----	---	------------	-------	----	--

		Verifica a flessi	<u>one</u>			
	007.00					
M _{Ed} =	207.00	kNm				
N _{Ed} =	0.00	kN				
dove:						2
$A_{S,compr} =$					7.85	cm ²
$A_{S,tesa} =$					7.85	cm ²
con:		-		_		
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{c}=\epsilon_{cu}=$	0.0035					
$\sigma'_s < f_{yd}$					compressa in ca	•
$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa alla	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	- $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente pe	$r N_{Rd} < N_{Rd1}$ (ovvero x < x ₁)				
β_1 * b * x * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ *	•					
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d' / e')$						
β_1 * f_{cd} * b * x^2 - $(N_{Ed}$ - ϵ_{cu} * E_S * $A_{S,com}$	pr + f _{yd} * A _{S,tes}	a) * x - ε _{cu} * E _S * d'	$^{'}$ * $A_{S,compr} = 0$			
11'422	x ²	+	269'938	X	-17'318'030	= 0
x =	2.89	cm	<	x ₁ =	6.42	cm
$\sigma'_S = E_S * \varepsilon_{cu} * (1 - d' / x) =$	-28.64	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + A _s	_{3,compr} * σ' _S * (h / :	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	233,36	kNm	>	M _{Ed} =	207.00	kNm

M _{Rd} =	233.36	KINM	>	M _{Ed} =	207.00	KINM

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi						
	Ve	rifica tensioni in e	sercizio			
M _{Ed} =	58.00	kNm				
A _{S,compr} =					7.85	cm ²
A _{S,tesa} =					7.85	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.71	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d'	$/(1 + \gamma))^{0,5}] =$		11.57	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		564'633	cm ⁴
$\sigma_{\rm c} = {\rm M_{Ed}} * {\rm x} / {\rm J_{fess}} =$	1.19	MPa	<	0,60 * f _{ck} =	14.94	MPa
. 55						
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	100.81	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	58.00	kNm		
	$A_{S,compr} =$				
	A _{S,tesa} =				7.8
con:					
	b =	100	cm	h =	80
	d' =	3	cm	d =	77
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 15.71 & cm^2 \\ x &= & \left(n \, ^* \, A_{S,tot} \, / \, b \right) \, ^* \left[-1 \, + \, \left(1 \, + \, \left(2 \, ^* \, b \, / \, \left(n \, ^* \, A_{S,tot} \right) \right) \, ^* \, \left(d \, + \, \gamma \, ^* \, d' \right) \, / \, \left(1 \, + \, \gamma \right) \right] \, ^{0.5} \right] \, = & 11.57 & cm \\ J_{fess} &= & b \, ^* \, x^3 \, / \, 3 \, + \, n \, ^* \, A_{S,tesa} \, ^* \, \left(d \, - \, x \right)^2 \, + \, n \, ^* \, A_{S,compr} \, ^* \, \left(x \, - \, d' \right)^2 \, = & 564'633 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 100.81$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{-0.00002}{-0.00002} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00029$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2,5 * (h-d) = 7.50 cm$$

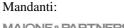
$$h_{c,eff 2} = (h-x)/3 = 22.81 cm$$

$$h_{c,eff 3} = h/2 = 40.00 cm$$

$$A_{c,eff} = min (h_{c,eff i}) * b = 750.00 cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.010$$

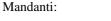
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$


$$\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 26.43 cm$$

$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.076	mm	<	w _{d,max} =	0.200	mm
u siii siiiax				u,iiiux		

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.19	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
					•	
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	100.81	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



	fessurazione	Verifica a fess	surazione			
		·				
M _{Ed} =	58.00	kNm				
$A_{S,compr} =$					7.85	cm ²
A _{S,tesa} =					7.85	cm ²
on:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.71	cm ²				
$J_{s} = n * M_{Ed} * (d - x) / J_{tess} =$	100.81	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E}$	-0.00002	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	0.00029			
ε_{sm} – E_s		E_{s}				
$\kappa_{t} =$	0.4	E_{-s}				
š		E s				
$\kappa_{t} = h_{c,eff\ 1} = 2.5 * (h-d) = h_{c,eff\ 2} = (h-x) / 3 =$	0.4	N.				
$\kappa_{t} = h_{c,eff\ 1} = 2.5 * (h-d) = h_{c,eff\ 2} = (h-x) / 3 = h_{c,eff\ 3} = h / 2 =$	0.4 7.50	cm				
$\begin{aligned} \kappa_t &= \\ h_{c,eff\ 1} &= 2,5 * (h-d) = \\ h_{c,eff\ 2} &= (h-x) / 3 = \\ h_{c,eff\ 3} &= h / 2 = \\ A_{c,eff} &= min \left(\ h_{c,eff\ i} \right) * b = \end{aligned}$	0.4 7.50 22.81	cm				
$\kappa_{t} = \\ h_{c,eff\ 1} = 2.5 * (h-d) = \\ h_{c,eff\ 2} = (h-x) / 3 = \\ h_{c,eff\ 3} = h / 2 = \\ A_{c,eff} = min (h_{c,eff\ i}) * b = \\ \rho_{eff} = A_{s} / A_{c,eff} = \\ \end{cases}$	0.4 7.50 22.81 40.00	cm cm cm				
$\kappa_{t} = \\ h_{c,eff~1} = 2.5 * (h-d) = \\ h_{c,eff~2} = (h-x) / 3 = \\ h_{c,eff~3} = h / 2 = \\ A_{c,eff} = min (h_{c,eff~i}) * b = \\ \rho_{eff} = A_{s} / A_{c,eff} = \\ \alpha_{e} = E_{s} / E_{cm} = \\ \end{cases}$	0.4 7.50 22.81 40.00 750.00	cm cm cm				
$\kappa_{t} = \\ h_{c,eff\ 1} = 2.5 * (h-d) = \\ h_{c,eff\ 2} = (h-x) / 3 = \\ h_{c,eff\ 3} = h / 2 = \\ A_{c,eff} = min (h_{c,eff\ i}) * b = \\ \rho_{eff} = A_{s} / A_{c,eff} = \\ \end{cases}$	0.4 7.50 22.81 40.00 750.00 0.010	cm cm cm				

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	164.00		191.00
RARA	72.00		
FREQ.	72.00		
Q. PERM.	72.00		

VERIFICA MURO DI SPONDA sp. 0.8 m [VALLE] - Armatura verticale

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

R _{ck} =	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
α_{cc} =	0.85	
γ _C =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

- Acciaio B450C

$$f_{y\,d} = f_{y\,k} / \gamma_S = 450.00$$
 MPa $f_{y\,d} = f_{y\,k} / \gamma_S = 391.30$ MPa $\gamma_S = 1.15$

210'000

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

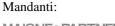
0.80952 0.41597 $\beta_2 =$ 0.002 $\varepsilon_{c,2} =$ 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\varepsilon_{ud} = 0.9 * \varepsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 80 cm d' = 3 cm 77 cm

Mandataria:

Mandanti:



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 191.00 V_{Ed, base} = 5.65 cm² A_{S,tesa} = 5.65 cm² con: $b_w = b =$ 100 cm 80 cm 3 77 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 170.58 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.51 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0007 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0,2 f_{cd} =$ 2.82 MPa < 0.00 kΝ $N_{Ed} =$ $A_{C} = b * h =$ 8'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 249.44 kNcon

 $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.324 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$ 249.44 kΝ > $V_{Ed} =$ 191.00 kΝ

		Verifica a fless	ione			
	404.00					
M _{Ed} =	164.00	kNm				
N _{Ed} =	0.00	kN				
dove:					F 0F	2
$A_{S,compr} =$					5.65	cm ²
$A_{S,tesa} =$					5.65	cm ²
con:	400				00	
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
$x_1 = \left[\varepsilon_{CII} / \left(\varepsilon_{CII} - \varepsilon_{V,d} \right) \right] * d' =$	6.4	cm				
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] u =$	0.4	CIII				
- Ipotesi x < x ₁ :						
$\epsilon_{\scriptscriptstyle C} = \epsilon_{\scriptscriptstyle Cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura d	ompressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		ar	matura tesa al	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1$	* f . / / /	Λ *f _	700	LAL		
$N_{Rd1} = p_1 \cup x_1$	I _{cd} + (A _{S,comp}	r - A _{S,tesa}) I _{yd} =	733	kN		
Calcala del memente resistente ne	- N - N /	(annioro v a v)				
- Calcolo del momento resistente per β_1 * b * x * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ *		(OVVEIU X < A ₁)				
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d')$	-					
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$.) * x - e * F. * (d' * Ac = 0			
11'422	pr''ya ''S,tes X ²	+ +	194'355	Х	-12'468'981	= 0
X =	2.56	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$		MPa		W1 -	0.12	Om
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + A	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	$-\beta_2 * x) =$	
M _{Rd} =	169.40	kNm	>	M _{Ed} =	164.00	kNm

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi	oni di ese	rcizio				
	<u>Ve</u>	erifica tensioni in	esercizio			
$M_{Ed} =$	72.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - b) * (-1 + (1 - b))]$	+ (2 * b / (n	* A _{S,tot})) * (d + γ * c	$(1 + \gamma)^{0.5}$] =		10.08	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		418'253	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.73	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	172.81	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

$M_{Ed} =$	72.00	kNm		
$A_{S,compr} =$				5.65
A _{S,tesa} =				5.65
con:				
b =	100	cm	h =	80
d' =	3	cm	d =	77
n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 11.31 & cm^2 \\ x &= & \left(n \, ^* \, A_{S,tot} \, / \, b \right) \, ^* \left[-1 \, + \, \left(1 \, + \, \left(2 \, ^* \, b \, / \, \left(n \, ^* \, A_{S,tot} \right) \right) \, ^* \, \left(d \, + \, \gamma \, ^* \, d' \right) \, / \, \left(1 \, + \, \gamma \right) \right] \, ^{0.5} \right] \, = & 10.08 & cm \\ J_{fess} &= & b \, ^* \, x^3 \, / \, 3 \, + \, n \, ^* \, A_{S,tesa} \, ^* \, \left(d \, - \, x \right)^2 \, + \, n \, ^* \, A_{S,compr} \, ^* \, \left(x \, - \, d' \right)^2 \, = & 418'253 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 172.81$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cdm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00014}{\sqrt{E_{s}}} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00049$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 \text{ cm}$$

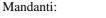
$$h_{c,eff 2} = (h-x)/3 = 23.31 \text{ cm}$$

$$h_{c,eff 3} = h/2 = 40.00 \text{ cm}$$

$$A_{c,eff} = \min \left(h_{c,eff i} \right) * b = 750.00 \text{ cm}^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.008$$

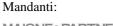
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$


$$\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 37.26 \text{ cm}$$

$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.184	mm	<	W _{d max} =	0.200	mm
Wd - c _{sm} Δ _{smax} -	0.104			wd,max —	0.200	

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.73	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	172.81	MPa	<	$0.8 * f_{yk} =$	360.00	MPa





Si è condotta la verifica di f	essurazione)				
		Verifica a fe	ssurazione			
$M_{Ed} =$	72.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
on:						
b =	100	cm		h =	80	cm
d' =	3	cm		d =	77	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
J _{fess} = b * x ³ / 3	3 + n * A _{S,tesa}	* (d - x) ² + n * A _{S,comp}	, * (x - d') ² =		418'253	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$	172.81	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df} \right)}{E} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df} \right)}{E}$	0.00014	$< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00049			
E _s		E_{s}				
$\kappa_{t} =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	23.31	cm				
$h_{c,eff 3} = h / 2 =$	40.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.008					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d' + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	37.26	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.184	mm	<	W _{d.max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.3 Muro di sponda sp. 1.5 m

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	230.00		405.00
RARA	77.00		
FREQ.	77.00		
Q. PERM.	77.00		

VERIFICA MURO DI SPONDA sp. 1.5 m - Ripartitori orizzontali

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γs =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	150	cm
d' =	3	cm
d –	147	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

411.17

	-II- 4					
Si sono condotte la verifica al ta	glio e alia fi					
		Verifica a ta	<u>g110</u>			
Elemento senza armature trasversa	ıli resistenti a	a taglio				
V _{Ed, base} =	= 405.00	kN				
A _{S,compr} =	•				7.70	cm ²
A _{S,tesa} =	=				7.70	cm ²
con:						
$b_w = b =$	= 100	cm		h =	150	cm
d' =	= 3	cm		d =	147	cm
$V_{Rd1} = [0.18 * k *$	(100 * 01 * fck)	$0^{1/3} / v_{\rm c} + 0.15 * \sigma_{\rm c}$] * b _w * d =		263.79	kN
	· P1 000	, 10	,p2 W			
con:		_				
$k = 1 + (200 / d)^{1/2} =$	1.37	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0005	≤	0.02			
A _{SI} = armatura longitudinale tesa						
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
•	0.00	 kN				
N _{Ed} =	= 0.00	1014				
•		cm ²				
$N_{Ed} = A_C = b * h = A_C$	= 15'000	cm ²	chi o alla preco	mpressione		
$N_{Ed} = A_C = b * h = A_C$	= 15'000	cm ²	chi o alla preco	mpressione		
N_{Ed} = A_C = $b * h$ = N_{Ed} = forza longitudinale di compression	= 15'000 one nella sezi	cm² one dovuta ai cario	chi o alla precoi	mpressione		
N_{Ed} = A_C = $b * h$ = N_{Ed} = forza longitudinale di compression	= 15'000 one nella sezi	cm ²	chi o alla precoi	mpressione	411.17	kN
N_{Ed} = A_C = $b * h$ = N_{Ed} = forza longitudinale di compression $V_{Rd \; 2}$	= 15'000 one nella sezi	cm² one dovuta ai cario	chi o alla preco	mpressione	411.17	kN
N_{Ed} = A_C = $b * h$ = N_{Ed} = forza longitudinale di compression	= 15'000 one nella sezione = (V _{min} + 0.15	cm² one dovuta ai cario	chi o alla precoi	mpressione	411.17	kN

kΝ

ENGINEERING

 $V_{Ed} =$

405.00

kN

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

		Verifica a flessi	<u>one</u>			
	000.00	Liblian				
M _{Ed} =	230.00	kNm				
N _{Ed} =	0.00	kN				
A _{S.compr} =					7.70	cm ²
$A_{S,compr} = A_{S,tesa} =$					7.70	cm ²
Con:					1.10	CIII
b =	100	cm .		h =	150	cm
d' =	3	cm		d =	147	cm
-	-			-		-
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{vd})] * d' =$	6.4	cm				
· · · · · · · · · · · · · · · · ·						
- Ipotesi x < x ₁ :						
$\epsilon_{\rm c} = \epsilon_{\rm cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura co	ompressa in ca	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arn	natura tesa all	'a tensione f _{ya}
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	- $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente pe		ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$	-					
dove: $\sigma'_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d')$						
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,comp})$			•			
11'422	x ²	+	264'539		-16'971'669	= 0
	2.87	cm	<	x ₁ =	6.42	cm
$\sigma'_S = E_S * \varepsilon_{cu} * (1 - d' / x) =$	-34.14	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (I)$	h / 2 - d') + A _S	s,compr * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2 -	$\beta_2 * x = $	
M _{Rd} =	439.62	kNm	>	$M_{Ed} =$	230.00	kNm

VERIFICA STATO LIMITE DI ESI	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi	oni di ese	rcizio				
	<u>V</u> e	erifica tensioni in e	esercizio			
$M_{Ed} =$	77.00	kNm				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n	* $A_{S,tot}$)) * (d + γ * d	') / (1 + γ)) ^{0,5}] =	=	16.44	cm
$J_{fess} = b * x^3 / 3 + n * .$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		2'136'976	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	0.59	MPa	<	0,60 * f _{ck} =	14.94	MPa
σ _s = n * M _{Ed} * (d - x) / J _{fess} =	70.56	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	77.00	kNm		
	$A_{S,compr} =$				7.70
	A _{S,tesa} =				7.70
:					
	b =	100	cm	h =	150
	d' =	3	cm	d =	147
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 15.39 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 16.44 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 2'136'976 & cm^4 \end{split}$$

$$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} = 70.56$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_e \cdot \rho_{eff})}{E_s} = \frac{-0.00017}{E_s} < 0.6 \cdot \frac{\sigma_s}{E_s} = 0.00020$$

$$\kappa_t = 0.4$$

$$\begin{array}{lllll} h_{c,eff~1} = 2.5 * (h\text{-d}) = & 7.50 & cm \\ h_{c,eff~2} = (h\text{-x}) \, / \, 3 = & 44.52 & cm \\ h_{c,eff~3} = h \, / \, 2 = & 75.00 & cm \\ A_{c,eff} = min \left(\, h_{c,eff~i} \right) * \, b = & 750.00 & cm^2 \\ & & & & & & & & \\ \rho_{eff} = A_s \, / \, A_{c,eff} = & 0.010 & & & \\ \alpha_e = E_s \, / \, E_{cm} = & 6.68 & & & & \end{array}$$

$$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{eff}} = 33.39 \quad \text{cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.100	mm	≤	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	0.59	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	70.56	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

Mandanti:

Si è condotta la verifica di f	fessurazion	e				
		Verifica a fes	ssurazione			
$M_{Ed} =$	77.00	kNm				
A _{S,compr} =					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:	400				450	
b = d' =	100 3	cm		h =	150	cm
	ა 15	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
J _{fess} = b * x ³ /	3 + n * A _{S,tesa}	a * (d - x) ² + n * A _{S,comp}	r * (x - d') ² =		2'136'976	cm ⁴
$\sigma_{\rm s}$ = n * M _{Ed} * (d - x) / J _{fess} =	70.56	MPa				
$\sigma_s - k_t \frac{f_{con}}{1 + \alpha_s \cdot \rho_{off}}$						
$\varepsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_e \cdot \rho_{eff})}{E} = \frac{\sigma_s - k_t \frac{f_{cm}}{\rho_{eff}}}{E}$	-0.00017	$< 0.6 \cdot \frac{\sigma_s}{E}$	= 0.00020			
Z ,	0.4	L s				
$\kappa_{t} = h_{c,eff 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x)/3 =$	44.52	cm				
$h_{c,eff\ 3} = h/2 =$	75.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.010					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	33.39	cm				
smax is in the same $ ho_{e\!f\!f}$						

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T _{ED} [kN/m]
SLU	541.00		407.00
RARA	210.00		
FREQ.	210.00		
Q. PERM.	210.00		

VERIFICA MURO DI SPONDA sp. 1.5 m - Armatura verticale

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
$lpha_{ t cc}$ =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ_{S} =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

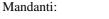
- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ 0.00186 $\epsilon_{yd} = f_{yd} / E_S =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	150	cm
d' =	3	cm
d =	147	cm

Mandanti:



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


Si sana candatta	la verifica al tagli	n e alla fle	esione				
SI SONO CONDOUCE	ia verifica ai tagii	J e alia lie	Verifica a ta	nalio			
Elemento senza arı	matura tracuarcali	rocietopti s		gno			
Elemento senza an	nature trasversan i	esistenti a	tagilo				
	V _{Ed. base} =	407.00	kN				
	A _{S,compr} =					10.05	cm ²
	A _{S.tesa} =					10.05	cm ²
con:	- O,tesa						
	$b_w = b =$	100	cm		h =	150	cm
	 d' =	3	cm		d =	147	cm
con:	Rd = [0.18 * k * (10)]	,		2		288.35	kN
	= 1 + (200 / d) ^{1/2} =		<u>≤</u> ≤				
	$_{1} = A_{SI} / (b_{w} * d) = $	0.0007	≤	0.02			
A _{SI} = armatura longit		0.00	MPa		0.24	2.02	MDo
	$\sigma_{cp} = N_{Ed} / A_c = N_{Ed} = N_{Ed} = N_{Ed}$	0.00	kN	<	$0.2 f_{cd} =$	2.82	MPa
	24	15'000	cm ²				
	Ü			. h. '			
	naie di compressione	nella sezio	ne dovuta ai cari	cni o alia precol	mpressione		
N _{Ed} = forza longitudir							
N _{Ed} = forza longitudir							
N _{Ed} = forza longitudir	V _{Rd 2} = (v _{min} + 0.15	* σ _{cp}) * b _w * d =			411.17	kN

kΝ

 $V_{Ed} =$

>

407.00

kΝ

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

411.17

		Verifica a fless	one			
	544.00	LNI				
M _{Ed} =	541.00	kNm				
N _{Ed} =	0.00	kN				
dove:					10.05	2
$A_{S,compr} =$					10.05	cm ²
A _{S,tesa} =					10.05	cm ²
con:	100	om		h -	150	om
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura c	ompressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa al	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1$	f _{cd} + (A _{S,compi}	r - A _{S,tesa}) * f _{yd} =	733	kN		
- Calcolo del momento resistente pe	rN _{Rd} < N _{Rd1} ((ovvero x < x ₁)				
β ₁ * b * x * f _{cd} + σ' _S * A _{S,compr} = A _{S,tesa} *		•				
dove: $\sigma'_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d')$	x)					
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$		a) * x - ε _{cu} * E _S * α	l' * A _{S,compr} = 0			
11'422	x ²	+	345'521	х	-22'167'078	= 0
x =	3.15	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$	33.94	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + As	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	572.55	kNm	>	M _{Ed} =	541.00	kNm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ES	FRCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi			, i u i u			
		rifica tensioni in e	esercizio			
M _{Ed} =	210.00	kNm				
A _{S,compr} =					10.05	cm ²
A _{S,tesa} =					10.05	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	20.11	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n [*]	* A _{S,tot})) * (d + γ * c	$(1 + \gamma)^{0.5} =$		18.47	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		2'737'269	cm ⁴
$\sigma_c = M_{Ed} * x / J_{fess} =$	1.42	MPa	<	0,60 * f _{ck} =	14.94	MPa
C - Inled X / Otess -	11.72	ivii u		0,00 I _{CK} =	1-10-1	1411 G
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	147.91	MPa	<	0,8 * f _{yk} =	360.00	MPa

ENGINEERING

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	210.00	kNm		
$A_{S,compr} =$				10.05
A _{S,tesa} =				10.05
on:				
b =	100	cm	h =	150
d' =	3	cm	d =	147
n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 20.11 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 18.47 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 2'737'269 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 147.91$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00031}{\text{cm}} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = \frac{0.00042}{\text{cm}}$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad \text{cm}$$

$$h_{c,eff 2} = (h-x)/3 = 43.84 \quad \text{cm}$$

$$h_{c,eff 3} = h/2 = 75.00 \quad \text{cm}$$

$$A_{c,eff} = \min \left(h_{c,eff} \right)^{*} b = 750.00 \quad \text{cm}^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.013$$

$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{s,max} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 30.49 \quad \text{cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.100	mm	≤	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.42	MPa	<	0,45 * f _{ck} =	11.21	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	147.91	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	210.00	kNm		
	$A_{S,compr} =$				10.05
	A _{S,tesa} =				10.05
con:					
	b =	100	cm	h =	150
	d' =	3	cm	d =	147
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 20.11 & cm^2 \\ x &= \left(n \, ^* \, A_{S,tot} \, / \, b \right) \, ^* \left[-1 \, + \, \left(1 \, + \, \left(2 \, ^* \, b \, / \, \left(n \, ^* \, A_{S,tot} \right) \right) \, ^* \, \left(d \, + \, \gamma \, ^* \, d' \right) \, / \, \left(1 \, + \, \gamma \right)^{0.5} \right] = & 18.47 & cm \\ J_{fess} &= b \, ^* \, x^3 \, / \, 3 \, + \, n \, ^* \, A_{S,tesa} \, ^* \, \left(d \, - \, x \right)^2 \, + \, n \, ^* \, A_{S,compr} \, ^* \, \left(x \, - \, d' \right)^2 = & 2'737'269 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 147.91$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{crm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00031}{0.00031} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00042$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

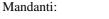
$$h_{c,eff 2} = (h-x) / 3 = 43.84 cm$$

$$h_{c,eff 3} = h / 2 = 75.00 cm$$

$$A_{c,eff} = min (h_{c,eff i}) * b = 750.00 cm$$

$$\rho_{eff} = A_{s} / A_{c,eff} = 0.013$$

$$\alpha_{e} = E_{s} / E_{cm} = 6.68$$


$$\Delta_{smax} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 30.49 cm$$

$W_d = \varepsilon_{sm} * \Delta_{smax} =$ 0.100	mm <	$w_{d,max} = 0.200$	mm
--	------	---------------------	----

Verifica tensioni in esercizio

$\sigma_c = M_{Ed} * x / J_{fess} =$	1.42	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	147.91	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	fessurazion				
		Verifica a fessur	<u>azione</u>		
M _{Ed} =	210.00	kNm			
A _{S,compr} =				10.05	cm ²
A _{S,tesa} =				10.05	cm ²
con:					
b =	100	cm	h =	150	cm
d' =	3	cm	d =	147	cm
n =	15				
γ = A _{S,compr} / A _{S,tesa} =	1.00				
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	20.11	cm ²			
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	147.91	MPa			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E}$	0.00031	$< 0.6 \cdot \frac{\sigma_s}{E_s} = 0$	0.00042		
E_s					
$\kappa_{t} =$	0.4				
$\kappa_{t} = $$$ h_{c,eff\ 1} = 2.5 * (h-d) =$	0.4 7.50	cm			
$\kappa_{t} = h_{c,eff\ 1} = 2.5 * (h-d) = h_{c,eff\ 2} = (h-x) / 3 =$	7.50 43.84	cm cm			
$\kappa_{t} =$ $h_{c,eff 1} = 2.5 * (h-d) =$ $h_{c,eff 2} = (h-x) / 3 =$ $h_{c,eff 3} = h / 2 =$	7.50 43.84 75.00	cm cm			
$\kappa_{t} =$ $h_{c,eff\ 1} = 2.5 * (h-d) =$ $h_{c,eff\ 2} = (h-x) / 3 =$ $h_{c,eff\ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff\ i}) * b =$	7.50 43.84 75.00 750.00	cm			
$\begin{aligned} \kappa_t &= \\ h_{c,eff\ 1} &= 2.5 * (h\text{-}d) = \\ h_{c,eff\ 2} &= (h\text{-}x) \ / \ 3 = \\ h_{c,eff\ 3} &= h \ / \ 2 = \\ A_{c,eff} &= min \ (\ h_{c,eff\ i}) * b = \\ \rho_{eff} &= A_s \ / \ A_{c,eff} = \end{aligned}$	7.50 43.84 75.00 750.00 0.013	cm cm			
$\kappa_{t} =$ $h_{c,eff\ 1} = 2.5 * (h-d) =$ $h_{c,eff\ 2} = (h-x) / 3 =$ $h_{c,eff\ 3} = h / 2 =$ $A_{c,eff} = min (h_{c,eff\ i}) * b =$	7.50 43.84 75.00 750.00	cm cm			

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	850.00		407.00
RARA	210.00		
FREQ.	210.00		
Q. PERM.	210.00		

VERIFICA MURO DI SPONDA sp. 1.5 m - Armatura verticale PORZIONE INFERIORE

	<u>C</u> a	aratteristiche dei	materiali materiali
- Cls R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{vd} = f_{vk} / \gamma_S =$	391.30	MPa	

Deformazioni limite cls e acciaio

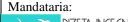
MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

 $\gamma_S =$

1.15


210'000

- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

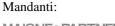
0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ $\epsilon_{y\,d} = f_{y\,d} \, / \, E_S =$ 0.00186 0.0675

Caratteristiche geometriche della sezione di cls

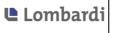
b =	100	cm
h =	150	cm
d' =	3	cm
d =	147	cm

Mandanti:

coefficiente parziale di sicurezza relativo all'acciaio



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


Si sono condotte la ve	erifica al tagli	o e alla fle	essione				
			Verifica a ta	glio			
Elemento senza armatu	re trasversali i	resistenti a	taglio				
	V _{Ed, base} =	407.00	kN				
	A _{S,compr} =					16.34	cm ²
	A _{S,tesa} =					16.34	cm ²
con:							
	$b_w = b =$	100	cm		h =	150	cm
	d' =	3	cm		d =	147	cm
$V_{Rd 1} =$	[0.18 * <i>k</i> * (10	0 * ρ ₁ * f _{ck}) ¹	$^{1/3}$ / $\gamma_{\rm C}$ + 0.15 * $\sigma_{\rm c}$	_p] * b _w * d =		339.00	kN
	: [0.18 * <i>k</i> * (10	0 * ρ ₁ * f _{ck}) ¹	$^{1/3}$ / $\gamma_{\rm C}$ + 0.15 * $\sigma_{\rm c}$	p] * b _w * d =		339.00	kN
con:						339.00	kN
con: k = 1 +	(200 / d) ^{1/2} =	1.37	<u>≤</u>	2		339.00	kN
con: $k = 1 + \rho_1 = A$	$(200 / d)^{1/2} =$ $a_{SI} / (b_w * d) =$					339.00	kN
con: $k = 1 + \rho_1 = A$ $\rho_1 = A$ $A_{SI} = \text{armatura longitudina}$	$(200 / d)^{1/2} =$ $\frac{1}{2} (b_w * d) =$ $\frac{1}{2} (b_w * d) =$	1.37 0.0011	≤ ≤	2 0.02	0.2 f. =		
con: $k = 1 + \rho_1 = A$ $\rho_1 = A$ $A_{SI} = \text{armatura longitudina}$	$(200 / d)^{1/2} =$ $_{SI} / (b_w * d) =$ $_{Ie} tesa$ $_{Ie} N_{Ed} / A_c =$	1.37 0.0011 0.00	≤ ≤ MPa	2	0,2 f _{cd} =	2.82	kN MPa
con: $k = 1 + \rho_1 = A$ $A_{SI} = \text{armatura longitudina}$ σ_{CP}	$(200 / d)^{1/2} =$ $A_{Si} / (b_w * d) =$ $A_{Si} / (b_w * d) =$ $A_{Ed} / A_c =$ $A_{Ed} / A_c =$	1.37 0.0011 0.00 0.00	≤ ≤ MPa kN	2 0.02	0,2 f _{cd} =		
con: $k=1+\\ \rho_1=A\\ A_{Si}=\text{armatura longitudina}\\ \sigma_{cp}$	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$ $A_{CI} = A_{CI} = A_{$	1.37 0.0011 0.00 0.00 15'000	≤ ≤ MPa kN cm²	2 0.02 <	. 00		
con: $k = 1 + \rho_1 = A$ $A_{SI} = \text{armatura longitudina}$ σ_{CP}	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$ $A_{CI} = A_{CI} = A_{$	1.37 0.0011 0.00 0.00 15'000	≤ ≤ MPa kN cm²	2 0.02 <	. 00		
con: $k=1+\\ \rho_1=A\\ A_{Si}=\text{armatura longitudina}\\ \sigma_{cp}$	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$ $A_{ISI} /$	1.37 0.0011 0.00 0.00 15'000	≤ ≤ MPa kN cm² one dovuta ai cario	2 0.02 <	. 00	2.82	MPa
con: $k=1+\\ \rho_1=A\\ A_{Si}=\text{armatura longitudina}\\ \sigma_{cp}$	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$ $A_{ISI} /$	1.37 0.0011 0.00 0.00 15'000	≤ ≤ MPa kN cm²	2 0.02 <	. 00		
con: $k=1+\\ \rho_1=A\\ A_{Si}=\text{armatura longitudina}\\ \sigma_{cp}$	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$ $A_{ISI} /$	1.37 0.0011 0.00 0.00 15'000	≤ ≤ MPa kN cm² one dovuta ai cario	2 0.02 <	. 00	2.82	MPa

kΝ

411.17

 $V_{Ed} =$

>

407.00

kΝ

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

		Verifica a flessi	ione			
		Vermoa a noos	One			
M _{Ed} =	850.00	kNm				
N _{Ed} =	0.00	kN				
dove:						
$A_{S,compr} =$					16.34	cm ²
A _{S,tesa} =					16.34	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$					compressa in c	•
$\sigma_s = f_{yd} =$	391.30	MPa		ar	rmatura tesa al	la tensione
$N_{Rd1} = \beta_1 * b * x_1 * f$	cd + (A _{S,compr}	- $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente per	$N_{Rd} < N_{Rd1}$ (4)	ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} * f_{st}$						
dove: $\sigma'_{S} = E_{S} * \epsilon'_{S} = E_{S} * \epsilon_{cu} * (1 - d' / x)$:)					
β_1 * f_{cd} * b * x^2 - $$ (N_{Ed} - ϵ_{cu} * E $_S$ * $A_{S,compr}$	+ f _{yd} * A _{S,tess}	a) * x - ε _{cu} * E _S * α	d' * A _{S,compr} = 0			
11'422	x^2	+	561'471	х	-36'021'501	= 0
en de la companya de	3.67	cm	<	x ₁ =	6.42	cm
$\sigma'_S = E_S * \varepsilon_{cu} * (1 - d' / x) =$	134.54	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (h)$	/ 2 - d') + A _S	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	926.69	kNm	>	M _{Ed} =	850.00	kNm

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi						
	<u>Ver</u>	rifica tensioni in e	esercizio esercizio			
M _{Ed} =	210.00	kNm				
$A_{S,compr} =$					16.34	cm ²
A _{S,tesa} =					16.34	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	32.67	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	$[1] / (1 + \gamma)^{0.5}] =$		22.65	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d - :	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		4'271'049	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.11	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	91.71	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	210.00	kNm			
	$A_{S,compr} =$				16.34	
	A _{S,tesa} =				16.34	
con:						
	b =	100	cm	h =	150	
	d' =	3	cm	d =	147	
	n =	15				

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 32.67 & cm^2 \\ x &= & (n * A_{S,tot} \, / \, b) * \, [-1 + (1 + (2 * b \, / \, (n * A_{S,tot})) * (d + \gamma * d') \, / \, (1 + \gamma))^{0.5}] = & 22.65 & cm \\ J_{fess} &= & b * x^3 \, / \, 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 4'271'049 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 91.71$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00018}{\text{cm}} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00026$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad \text{cm}$$

$$h_{c,eff 2} = (h-x)/3 = 42.45 \quad \text{cm}$$

$$h_{c,eff 3} = h/2 = 75.00 \quad \text{cm}$$

$$A_{c,eff} = \min(h_{c,eff}) \cdot b = 750.00 \quad \text{cm}^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.022$$

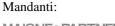
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{s,max} = k_{3} \cdot d + k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 22.69 \quad \text{cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.100	mm	≤	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	1.11	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
						,
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	91.71	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f	ie 33 di azioni	7				
		Verifica a fes	surazione			
$M_{Ed} =$	210.00	kNm				
$A_{S,compr} =$					16.34	cm ²
$A_{S,tesa} =$					16.34	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	32.67	cm ²				
		$(n * A_{S,tot})$ * $(d + \gamma * (d - x)^2 + n * A_{S,compt}$			22.65	cm
$\sigma_{\rm s}$ = n * M _{Ed} * (d - x) / J _{fess} =	91.71	MPa				
		MPa $< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00026			
			= 0.00026			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df}\right)}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}}}{E_{s}}$	0.00018		= 0.00026			
	0.00018	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00026			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (1 + \alpha_{e} \cdot \rho_{df})}{E_{s}} = \frac{\varepsilon_{sm}}{E_{s}}$ $\kappa_{t} = \frac{\kappa_{t}}{h_{c,eff 1}} = 2.5 * (h-d) = \frac{\varepsilon_{sm}}{E_{s}}$	0.00018 0.4 7.50	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00026			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{s} \frac{f_{clm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df} \right)}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{h_{c,eff 1} = 2,5 * (h-d)} = h_{c,eff 2} = (h-x) / 3 = \frac{\sigma_{s} - k_{s} \frac{f_{clm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df} \right)}{h_{c,eff 2} = (h-x) / 3}$	0.00018 0.4 7.50 42.45	$< 0.6 \cdot \frac{\sigma_s}{E_s}$ cm	= 0.00026			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot \left(1 + \alpha_{e} \cdot \rho_{df}\right)}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{c,eff 1}} = 2.5 * (h-d) = \frac{h_{c,eff 2} = (h-x) / 3}{h_{c,eff 3} = h / 2}$	0.00018 0.4 7.50 42.45 75.00	$< 0.6 \cdot \frac{\sigma_s}{E_s}$ cm cm cm	= 0.00026			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t}}{E_{s}} =$	0.00018 0.4 7.50 42.45 75.00 750.00	$< 0.6 \cdot \frac{\sigma_s}{E_s}$ cm cm cm	= 0.00026			
$\varepsilon_{mn} = \frac{\sigma_{s} - k_{t} \frac{f_{cmn}}{\rho_{dff}} \cdot (1 + \alpha_{e} \cdot \rho_{dff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cmn}}{\rho_{dff}} \cdot (1 + \alpha_{e} \cdot \rho_{dff})}{E_{s}} = \frac{\sigma_{s} - k_{t}}{E_{s}} = \frac{\sigma_{s} - k_{t}}{E_{s}}$	0.00018 0.4 7.50 42.45 75.00 750.00 0.022	$< 0.6 \cdot \frac{\sigma_s}{E_s}$ cm cm cm	= 0.00026			

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.4 Pile

	M _{ED}	N _{ED}	T _{ED}
	[kNm/m]	[kN/m]	[kN/m]
SLU	192.00		397.00
RARA	49.00		
FREQ.	49.00		
Q. PERM.	49.00		

PILE - Ripartitori orizzontali

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

OIS NCK 2 40 IIII a			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

210'000

- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\begin{array}{rcl} \beta_1 = & 0.80952 \\ \beta_2 = & 0.41597 \\ \epsilon_{c,2} = & 0.002 \\ \epsilon_{cu} = & 0.0035 \\ \epsilon_{uk} = & 0.075 \\ \epsilon_{yd} = f_{yd} \, / \, E_S = & 0.00186 \\ \epsilon_{ud} = 0.9 \, ^* \, \epsilon_{uk} = & 0.0675 \end{array}$

Caratteristiche geometriche della sezione di cls

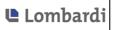
b =	100	cm
h =	150	cm
d' =	3	cm
d –	1/17	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTI	MO					
Si sono condotte la verifica al tagl	io e alla fle	ssione				
		Verifica a ta	<u>glio</u>			
Elemento senza armature trasversali	resistenti a	taglio				
V _{Ed, base} =	397.00	kN				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
$b_w = b =$	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
$V_{Rd 1} = [0.18 * k * (1)]$	00 * 01 * fck)1	$^{/3}$ / $\gamma_{\rm C}$ + 0.15 * $\sigma_{\rm C}$	o] * b _w * d =		263.79	kN
No. 1	P1 007	,0 00	μ 2 W			
con:		_				
$k = 1 + (200 / d)^{1/2} =$	1.37	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0005	≤	0.02			
A _{SI} = armatura longitudinale tesa		_				
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
$N_{Ed} =$	0.00	kN				
$A_C = b * h =$	15'000	cm ²				
N _{Ed} = forza longitudinale di compression	e nella sezio	ne dovuta ai cario	hi o alla precon	npressione		
V _{Rd 2} =	(V _{min} + 0.15 *	σ_{cp}) * b _w * d =			411.17	kN
con						
$V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$	0.280					
$V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$	411.17	kN	>	V _{Ed} =	397.00	kN
(110 / 110 2)						

ENGINEERING



		Verifica a flessi	<u>one</u>			
М -	102.00	kNlm				
$M_{Ed} = N_{Ed} =$	192.00 0.00	kNm kN				
dove:	0.00	KIN				
dove. $A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
CON:					70	OIII
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{\rm c} = \epsilon_{\rm cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura co	ompressa in ca	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arr	matura tesa all	a tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 * t$	f _{cd} + (A _{S,compr}	- $A_{S,tesa}$) * f_{yd} =	733	kN		
_						
- Calcolo del momento resistente per		ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_S * A_{S,compr} = A_{S,tesa} * f_{cd}$	•					
dove: $\sigma'_S = E_S * \varepsilon'_S = E_S * \varepsilon_{cu} * (1 - d' / x)$		*., *E *a	" * A O			
β_1 * f_{cd} * b * x^2 - (N_{Ed} - ϵ_{Cu} * E_S * $A_{S,compr}$ 11'422	r + T _{yd} " A _{S,tesa} x ²	a) "X - ε _{cu} " E _S " O" +	$1^{\circ} A_{S,compr} = 0$ 264'539		-16'971'669	= 0
·	2.87	cm	204 539 <	x X ₁ =	6.42	= 0 cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$		MPa		^1 -	0.72	OIII
$M_{Rd} = A_{S,tesa} * f_{yd} * (h$	/ 2 - d') + A _S	,compr * σ's * (h / 2	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2 ·	$-\beta_2 * x) =$	
M _{Rd} =	439.62	kNm	>	$M_{Ed} =$	192.00	kNm



VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi	oni di eser	cizio				
	<u>Ve</u>	rifica tensioni in e	esercizio			
$M_{Ed} =$	49.00	kNm				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	') / (1 + γ)) ^{0,5}] =		16.44	cm
J _{fess} = b * x ³ / 3 + n *	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		2'136'976	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	0.38	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	44.90	MPa	<	0,8 * f _{vk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	49.00	kNm		
	A _{S,compr} =				7.70
	A _{S,tesa} =				7.70
n:					
	b =	100	cm	h =	150
	d' =	3	cm	d =	147
	n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 15.39 cm^2$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 16.44 cm$$

$$J_{tess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 2'136'976 cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 44.90$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{-0.00029}{-0.00029} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00013$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

$$h_{c,eff 2} = (h-x)/3 = 44.52 \quad cm$$

$$h_{c,eff 3} = h/2 = 75.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff i}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.010$$

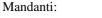
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 33.39 \quad cm$$

	$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.000	mm	≤	$w_{d,max} =$	0.200	mm
--	---	-------	----	---	---------------	-------	----

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	0.38	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
		-				
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	44.90	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f	essurazione)				
		Verifica a fe	ssurazione			
$M_{Ed} =$	49.00	kNm				
$A_{S,compr} =$					7.70	cm ²
A _{S,tesa} =					7.70	cm ²
on:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	15.39	cm ²				
$J_{fess} = b * x^3 / 3$	3 + n * A _{S,tesa} *	* (d - x) ² + n * A _{S,comp}	, * (x - d') ² =		2'136'976	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	44.90	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}}$	-0.00029	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00013			
$\kappa_{\rm t}$ =	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	44.52	cm				
$h_{c,eff 3} = h / 2 =$	75.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.010					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	33.39	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.043	mm	<	W _{d max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	627.00		363.00
RARA	25.00		
FREQ.	25.00		
Q. PERM.	25.00		

PILE - Armatura verticale

Caratteristiche dei materiali

> 40 MPa

- CI	s R _{ck} ≥ 40 MPa			
	R _{ck} =	30.00	MPa	
	$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
	$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_C =$	14.11	MPa	
	α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
	γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
	$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
	$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
	$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
	$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
	f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
	$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Ad	cciaio B450C			
	$f_{yk} =$	450.00	MPa	
	$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	

$$f_{yk} = 450.00$$
 MPa $f_{yd} = f_{yk} / \gamma_S = 391.30$ MPa $\gamma_S = 1.15$ Es = 210'000 MPa

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ 0.00186 $\epsilon_{yd} = f_{yd} / E_S =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	150	cm
d' =	3	cm
d =	147	cm

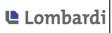
Mandataria:

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	ULTIN	10						
Si sono condotte la verifica a	al tagli	o e alla fle	essione					
			Veri	fica a ta	<u>aglio</u>			
Elemento senza armature trasv	versaliı	resistenti a	taglio					
$V_{Ed,t}$	base =	363.00	kN					
$A_{S,cc}$	ompr =						12.06	cm ²
$A_{S,}$,tesa =						12.06	cm ²
con:								
b_w	= b =	100	С	:m		h =	150	cm
	d' =	3	С	m		d =	147	cm
V _ [0.18 *	L * (10	0 * - *f \1	1/3 / (15 * -	1*b *d_		206.42	ĿN
$V_{Rd 1} = [0.18 *]$	k * (10	0 * ρ ₁ * f _{ck}) ¹	^{1/3} / γ _C + (0.15 * σ _σ	_{cp}] * b _w * d =		306.42	kN
con:								
	_			_				
k = 1 + (200 / d)	$(1)^{1/2} = $	1.37		≥	2			
k = 1 + (200 / d) $\rho_1 = A_{SI} / (b_w)$	· _	0.0008		≤ ≤	2 0.02			
$\rho_1 = A_{SI} / (b_w)$	· _							
$\rho_1 = A_{SI} / (b_w)$	* d) =		: 			0,2 f _{cd} =	2.82	MPa
$\rho_1 = A_{Sl} \ / \ (b_w)^2$ $A_{Sl} = \text{armatura longitudinale tesa}$ $\sigma_{cp} = N_{Ed} \ /$	* d) =	0.0008	M	≤	0.02	$0.2 f_{cd} =$	2.82	MPa
$\rho_1 = A_{Sl} \ / \ (b_w)^2$ $A_{Sl} = \text{armatura longitudinale tesa}$ $\sigma_{cp} = N_{Ed} \ /$	* d) =	0.008	M k	≤ IPa	0.02	$0.2 f_{cd} =$	2.82	MPa
$\rho_1 = A_{SI} / (b_w)^2$ $A_{SI} = \text{armatura longitudinale tesa}$ $\sigma_{cp} = N_{Ed} /$ $A_{C} = b$	' A _c = N _{Ed} = ' h =	0.0008 0.00 0.00 15'000	M k c	≤ IPa :N m²	0.02	. 00	2.82	MPa
$\rho_1 = A_{SI} / (b_w)^2$ $A_{SI} = \text{armatura longitudinale tesa}$ $\sigma_{cp} = N_{Ed} /$	' A _c = N _{Ed} = ' h =	0.0008 0.00 0.00 15'000	M k c	≤ IPa :N m²	0.02	. 00	2.82	MPa
$\rho_1 = A_{SI} / (b_w)^2$ $A_{SI} = \text{armatura longitudinale tesa}$ $\sigma_{cp} = N_{Ed} /$ I $A_C = b$ $N_{Ed} = \text{forza longitudinale di compression}$	A _c = N _{Ed} = * h = ressione	0.0008 0.00 0.00 15'000	M k co	≤ IPa kN m² a ai carid	0.02	. 00	2.82	MPa kN

kΝ


>

 $V_{Ed} =$

363.00

kΝ

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

411.17

		Verifica a flessi	ana			
		Vernica a nessi	<u>one</u>			
M _{Ed} =	627.00	kNm				
N _{Ed} =	0.00	kN				
dove:						
A _{S,compr} =					12.06	cm ²
A _{S,tesa} =					12.06	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x₁:						
$\epsilon_{c} = \epsilon_{cu} =$	0.0035					
$\sigma'_s < f_{yd}$				armatura d	compressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		ar	matura tesa al	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	f _{cd} + (A _{S,compt}	r - A _{S,tesa}) * f _{yd} =	733	kN		
- Calcolo del momento resistente per	NR4 < NR41 ((ovvero x < x₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$						
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d')$	-					
β_1 * f_{cd} * b * x^2 - (N_{Ed} - ε_{cu} * E_S * $A_{S,comp}$	or + f _{yd} * A _{S,tes}	a) * x - ε _{cu} * E _S * c	' * A _{S,compr} = 0			
11'422	x^2	+	414'625	Х	-26'600'493	= 0
x =	3.34	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$	74.98	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (I$	n / 2 - d') + As	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	685.91	kNm	>	M _{Ed} =	627.00	kNm

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi	oni di eser	cizio				
	<u>Ve</u>	rifica tensioni in e	esercizio			
$M_{Ed} =$	25.00	kNm				
$A_{S,compr} =$					12.06	cm ²
A _{S,tesa} =					12.06	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	24.13	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - 1)]$	+ (2 * b / (n *	$(A_{S,tot})$) * (d + γ * c	$(1 + \gamma)^{0.5} =$		19.96	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		3'237'594	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	0.15	MPa	<	0,60 * f _{ck} =	14.94	MPa
1 24 1666				- OK		
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	14.71	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	25.00	kNm		
$A_{S,compr} =$				12.06
A _{S,tesa} =				12.06
n:				
b =	100	cm	h =	150
d' =	3	cm	d =	147
n =	15			

$$\begin{split} \gamma &= A_{S,compr} \, / \, A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 24.13 & cm^2 \\ x &= & (n * A_{S,tot} \, / \, b) * \, [-1 + (1 + (2 * b \, / \, (n * A_{S,tot})) * (d + \gamma * d') \, / \, (1 + \gamma))^{0.5}] = & 19.96 & cm \\ J_{fess} &= & b * x^3 \, / \, 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 3'237'594 & cm^4 \end{split}$$

$$\sigma_{\rm s} = {\rm n * M_{Ed} * (d - x) / J_{fess}} = 14.71$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{-0.00027}{-0.00027} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00004$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

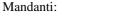
$$h_{c,eff 2} = (h-x)/3 = 43.35 \quad cm$$

$$h_{c,eff 3} = h/2 = 75.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff i}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.016$$

$$\sigma_{e} = E_{s}/E_{cm} = 6.68$$


$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 27.11 \quad cm$$

	$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.000	mm	\leq	$w_{d,max} =$	0.200	mm
--	---	-------	----	--------	---------------	-------	----

Verifica tensioni in esercizio

$\sigma_c = M_{Ed} * x / J_{fess} =$	0.15	MPa	<	0,45 * f _{ck} =	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	14.71	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

Si è condotta la verifica di f	essurazion	e				
		Verifica a fes	surazione			
$M_{Ed} =$	25.00	kNm				
$A_{S,compr} =$					12.06	cm ²
A _{S,tesa} =					12.06	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	24.13	cm ²				
$J_{fess} = b * x^{3} / 3$ $\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$	3 + n * A _{S,tesa}	, * (d - x) ² + n * A _{S,compr}	* (x - d') ² =		3'237'594	cm ⁴
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{com}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{1}{E_{s}}$	-0.00027	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$\kappa_t =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	43.35	cm				
$h_{c,eff 3} = h / 2 =$	75.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.016					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	27.11	cm				
$W_d = \varepsilon_{sm} * \Delta_{smax} =$	0.011	mm	<	W _{d max} =	0.300	mm

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	769.00		363.00
RARA	25.00		
FREQ.	25.00		
Q. PERM.	25.00		

PILE - Armatura verticale PORZIONE INFERIORE

Caratteristiche dei materiali

- Cls R_{ck} ≥ 40 MPa

SIS INCK Z 40 IIII U		
R _{ck} =	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
$lpha_{ t cc} =$	0.85	
γ _C =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
$f_{bd} = 2.25 * f_{ctk} / \gamma_C =$	2.69	MPa
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa
Acciaio B450C		
$f_{yk} =$	450.00	MPa
1 1	204.20	MD-

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

- A

$$f_{yk} = 450.00$$
 MPa
 $f_{yd} = f_{yk} / \gamma_S = 391.30$ MPa
 $\gamma_S = 1.15$ Es = 210'000 MPa

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\varepsilon_{uk} =$ 0.00186 $\epsilon_{yd} = f_{yd} / E_S =$ $\varepsilon_{ud} = 0.9 * \varepsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b = 100 cm h = 150 cm d' = 3 cm 147 cm

Mandataria:

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIN	10					
Si sono condotte la verifica al tagli	o e alla fle	essione				
		Verifica a ta	glio			
Elemento senza armature trasversali i	resistenti a	a taglio				
V _{Ed. base} =	363.00	kN				
A _{S.compr} =	000.00	KIN			14.07	cm ²
A _{S.tesa} =					14.07	cm ²
con:					1 1.07	OIII
b _w = b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
V _{Rd 1} = [0.18 * <i>k</i> * (10	0 * α. * f. \	1/3 / 0 ± 0 15 * σ	1*b *d-		322.57	kN
V _{Rd1} - [0.16	υ μ ₁ ι _{ck})	/γς + 0.13 ο	_p j b _w u =		322.31	KIN
con:		_				
$k = 1 + (200 / d)^{1/2} =$	1.37	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0010	≤	0.02			
A _{SI} = armatura longitudinale tesa		<u></u>				
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
N _{Ed} =	0.00	kN				
$A_C = b * h =$	15'000	cm ²				
N_{Ed} = forza longitudinale di compressione	nella sezio	one dovuta ai cario	chi o alla preco	mpressione		
	0.45	* ~ \ * h * d			444.47	LaN
$V_{Rd2} = ($	v _{min} + 0.15	$^* \sigma_{cp}) ^* b_w ^* d =$			411.17	kN
con						
$V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$	0.280					

kΝ

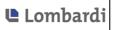
>

411.17

 $V_{Ed} =$

363.00

kΝ


 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

			Verifico o floor				
			Verifica a fless	ione			
	M _{Ed} =	769.00	kNm				
	N _{Ed} =	0.00	kN				
dove:	- Eu	0.00					
40.5.	A _{S.compr} =					14.07	cm ²
	A _{S.tesa} =					14.07	cm ²
con:	0,						
	b =	100	cm		h =	150	cm
	d' =	3	cm		d =	147	cm
	$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi	x < x ₁ :						
	$\epsilon_{_{\mathrm{C}}} = \epsilon_{_{\mathrm{CU}}} =$	0.0035					
	$\sigma'_s < f_{yd}$				armatura c	ompressa in ca	ampo elasti
	$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa all	a tensione i
		. / ^	_Λ *f _	700			
	$N_{Rd1} = \beta_1 * b * x_1 * f$	cd + (A _{S,compr}	- AS,tesa/ Tyd -	733	kN		
	NG. II.	ou v e,oomp	0,0000	733	kN		
	del momento resistente per	$N_{Rd} < N_{Rd1}$ (c	0,0000	733	kN		
β_1 * b * x	del momento resistente per * f _{cd} + σ' _S * A _{S,compr} = A _{S,tesa} * f _s	$N_{Rd} < N_{Rd1}$ (compared to $N_{rd} + N_{Ed}$	0,0000	733	kN		
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ * f_{S} \in E_S * ϵ'_S = E_S * ϵ_{cu} * (1 - d' / x	$N_{Rd} < N_{Rd1}$ (contraction)	ovvero x < x ₁)		kN		
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ * f_{S} $_{S}$ = E_S * ϵ'_S = E_S * ϵ_{cu} * (1 - d' / x $_{C}$	$N_{Rd} < N_{Rd1}$ (constant) $N_{rd} + N_{Ed}$ $N_{rd} + N_{rd}$ $N_{rd} + N_{rd}$	ovvero x < x ₁) (a) * x - ε _{cu} * E _S * (d' * A _{S,compr} = 0			
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per $ ^*f_{cd} + \sigma'_S * A_{S,compr} = A_{S,tesa} * f_S $ $ _S = E_S * \varepsilon'_S = E_S * \varepsilon_{cu} * (1 - d' / x $ $ _D * x^2 - (N_{Ed} - \varepsilon_{cu} * E_S * A_{S,compr} $ $ _{11'422} $	$N_{Rd} < N_{Rd1}$ (Control of the second o	ovvero x < x ₁) a) * x - ε _{cu} * E _S * α +	d' * A _{S,compr} = 0 483'729	×	-31'033'909	= 0
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ * f_S = E_S * ϵ'_S = E_S * ϵ_{cu} * (1 - d' / x $_D$ * x^2 - (N_{Ed} - ϵ_{cu} * E_S * $A_{S,compr}$ 11'422 $_X$ =	N _{Rd} < N _{Rd1} (C _{7d} + N _{Ed}) + f _{yd} * A _{S,tesa} x ² 3.51	ovvero x < x ₁)) * x - ε _{cu} * E _S * ε	d' * A _{S,compr} = 0		-31'033'909 6.42	= 0 cm
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per $ ^*f_{cd} + \sigma'_S * A_{S,compr} = A_{S,tesa} * f_S $ $ _S = E_S * \varepsilon'_S = E_S * \varepsilon_{cu} * (1 - d' / x $ $ _D * x^2 - (N_{Ed} - \varepsilon_{cu} * E_S * A_{S,compr} $ $ _{11'422} $	N _{Rd} < N _{Rd1} (C _{7d} + N _{Ed}) + f _{yd} * A _{S,tesa} x ² 3.51	ovvero x < x ₁) a) * x - ε _{cu} * E _S * α +	d' * A _{S,compr} = 0 483'729	×		
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ * f_S = E_S * ϵ'_S = E_S * ϵ_{cu} * (1 - d' / x $_D$ * x^2 - (N_{Ed} - ϵ_{cu} * E_S * $A_{S,compr}$ 11'422 $_X$ =	$N_{Rd} < N_{Rd1}$ (constant) $N_{Rd} < N_{Rd1}$ (constant) $N_{Rd} + N_{Ed}$ N_{Ed} $N_{$	ovvero x < x ₁)) * x - ε _{cu} * E _S * α + cm MPa	d' * A _{S,compr} = 0 483'729 <	x x ₁ =	6.42	
$\beta_1 * b * x$ dove: σ'_S	del momento resistente per $ ^*f_{cd} + \sigma'_S * A_{S,compr} = A_{S,tesa} * f_S $ $ ^*S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d' / x) $ $ ^*x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,compr} $ $ ^*1'422 $	$N_{Rd} < N_{Rd1}$ (constant) $N_{Rd} < N_{Rd1}$ (constant) $N_{Rd} + N_{Ed}$ N_{Ed} $N_{$	ovvero x < x ₁)) * x - ε _{cu} * E _S * α + cm MPa	d' * A _{S,compr} = 0 483'729 <	x x ₁ =	6.42	

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	e rara			
Si è condotta la verifica delle tensi	oni di eser	cizio				
	<u>Ve</u>	rifica tensioni in	<u>esercizio</u>			
M _{Ed} =	25.00	kNm				
$A_{S,compr} =$					14.07	cm ²
A _{S,tesa} =					14.07	cm ²
con:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	28.15	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - 1)]$	+ (2 * b / (n *	$(A_{S,tot})$) * (d + γ * o	$(1 + \gamma)^{0.5} =$		21.30	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		3'728'541	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	0.14	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	12.64	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	25.00	kNm		
$A_{S,compr} =$				14.07
A _{S,tesa} =				14.07
:				
b =	100	cm	h =	150
d' =	3	cm	d =	147
n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 28.15$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 21.30$$

$$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 3728'541$$

$$cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 12.64$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{-0.00023}{-0.00023} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00004$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

$$h_{c,eff 2} = (h-x)/3 = 42.90 \quad cm$$

$$h_{c,eff 3} = h/2 = 75.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff i}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.019$$

$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 24.69 \quad cm$$

	$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.000	mm	<u>≤</u>	$w_{d,max} =$	0.200	mm
--	---	-------	----	----------	---------------	-------	----

Verifica tensioni in esercizio

$\sigma_{c} = M_{Ed} * x / J_{fess} =$	0.14	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
		-				
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	12.64	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

Si è condotta la verifica di f	fessurazione)				
		Verifica a fe	ssurazione			
$M_{Ed} =$	25.00	kNm				
$A_{S,compr} =$					14.07	cm ²
A _{S,tesa} =					14.07	cm ²
on:						
b =	100	cm		h =	150	cm
d' =	3	cm		d =	147	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	28.15	cm ²				
$x = (n * A_{S,tot} / b) * [-$		$/ (n * A_{S,tot})) * (d + \gamma)$ $* (d - x)^2 + n * A_{S,comp}$	·		21.30	cm
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$	12.64	MPa				
		MPa $< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00004			
			= 0.00004			
$\mathcal{E}_{am} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot \left(\mathbf{l} + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}}$	-0.00023		= 0.00004			
· ·	-0.00023	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\kappa_{t}}{E_{s}}$ $\kappa_{t} = \frac{\kappa_{t}}{h_{c,eff}} = 2.5 * (h-d) = \frac{\kappa_{t}}{\kappa_{t}}$	-0.00023 0.4 7.50	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{h_{c,eff 1}} = 2.5 * (h-d) = h_{c,eff 2} = (h-x) / 3 = \frac{\kappa_{t}}{\hbar}$	-0.00023 0.4 7.50 42.90	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$E_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{c,eff 1}} = 2.5 * (h-d) = \frac{h_{c,eff 2} = (h-x) / 3}{h_{c,eff 3} = h / 2} = \frac{\kappa_{c,eff 3}}{E_{s}} = \frac{\kappa_{t}}{E_{s}}$	-0.00023 0.4 7.50 42.90 75.00	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$E_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E_{s}} = \frac{\sigma_{eff}}{E_{s}} = \frac{\sigma_{eff}}{E_{s}} = \frac{\sigma_{eff}}{E_{s}} = \frac{\sigma_{eff}}{E_{s}} + \frac{\sigma_{eff}}{E_{s}} = \frac{\sigma_{eff}}{E_{s}} + \frac{\sigma_{eff}}{E_{cm}} = \frac{\sigma_{eff}}{E_{s}} + \frac{\sigma_{eff}}{E_{s}} $	-0.00023 0.4 7.50 42.90 75.00 750.00	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			
$E_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}} \cdot (l + \alpha_{e} \cdot \rho_{df})}{E_{s}} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{df}}}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{s}} = \frac{\kappa_{t}}{E_{c,eff 1}} = \frac{h_{c,eff 2} - (h-x)}{3} = \frac{h_{c,eff 3} = h}{2} = \frac{h_{c,eff 3} = h}{2} = \frac{A_{c,eff}}{A_{c,eff}} = \frac{\kappa_{t}}{A_{c,eff}} = \kappa_{t$	-0.00023 0.4 7.50 42.90 75.00 750.00 0.019	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00004			

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.5 Soletta di copertura

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	95.00		76.00
RARA	77.00		
FREQ.	64.00		
Q. PERM.	59.00		

SOLETTA DI COPERTURA - Armatura longitudinale

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γc =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _S =	210'000	MPa	

Deformazioni limite cls e acciaio

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\epsilon_{uk} =$ $\epsilon_{vd} = f_{vd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	50	cm
d' =	3	cm
d =	47	cm

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio V_{Ed, base} = 5.65 cm² A_{S,tesa} = 5.65 cm² con: $b_w = b =$ 100 cm 50 cm 3 47 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 134.34 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.65 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0012 0.02 A_{SI} = armatura longitudinale tesa MPa $0,2 f_{cd} =$ 2.82 MPa $\sigma_{cp} = N_{Ed} / A_c =$ < 0.00 kΝ $N_{Ed} =$ $A_{C} = b * h =$ 5'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 174.35 kN

con $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.371

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$ 174.35 kΝ > $V_{Ed} =$ 76.00 kΝ



			Verifica a flessi	<u>one</u>			
	M _{Ed} =	95.00	kNm				
	N _{Ed} =	0.00	kN				
dove:	Eu	0.00					
	A _{S.compr} =					5.65	cm ²
	A _{S,tesa} =					5.65	cm ²
con:							
	b =	100	cm		h =	50	cm
	d' =	3	cm		d =	47	cm
	$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi	x < x ₁ :						
	$ \varepsilon_{\text{c}} = \varepsilon_{\text{cu}} = $	0.0035					
	$\sigma'_s < f_{yd}$					ompressa in c	•
	$\sigma_s = f_{yd} =$	391.30	MPa		arı	matura tesa al	la tensione t _{yd}
	$N_{Rd1} = \beta_1 * b * x_1 *$	f ± (Λ	^ *f _	700	LNI		
	$N_{Rd1} = P_1 \cup A_1$	Icd + (AS,comp	r - AS,tesa/ Iyd -	733	kN		
- Calcolo	o del momento resistente pe	- N No	(ovvero v < v.)				
	$c * f_{cd} + \sigma'_{S} * A_{S.compr} = A_{S.tesa} *$		(000610 X < X1)				
•	$E'_S = E_S * E'_S = E_S * E_{cu} * (1 - d')$						
	$b * x^2 - (N_{Ed} - \varepsilon_{cu} * E_S * A_{S,comp})$.a) * x -ε _{cu} * E _S * d	' * A _{S.compr} = 0			
11 00	11'422	x ²	+	194'355	х	-12'468'981	= 0
	X =	2.56	cm	<	x ₁ =	6.42	cm
	$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$		MPa				
	$M_{Rd} = A_{S,tesa} * f_{yd} * (I)$	n / 2 - d') + A	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
	.,		LNI			25.00	LMan
	M _{Rd} =	103.02	kNm	>	$M_{Ed} =$	95.00	kNm



VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi	oni di eser	cizio				
	<u>Ver</u>	rifica tensioni in e	esercizio e			
M _{Ed} =	77.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 - b)]$	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	") / (1 + γ)) ^{0,5}] =		7.67	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d - :	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		148'099	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	3.99	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	306.74	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	59.00	kNm		
$A_{S,compr} =$				5.65
$A_{S,tesa} =$				5.65
b =	100	cm	h =	50
d' =	3	cm	d =	47
n =	15			

$$\gamma = A_{S,compr} / A_{S,tesa} = 1.00$$

$$A_{S,tot} = A_{S,tesa} + A_{S,compr} = 11.31 cm^2$$

$$x = (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = 7.67 cm$$

$$J_{fess} = b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = 148'099 cm^4$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 235.04$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00044}{c \cdot \frac{\sigma_{s}}{E_{s}}} = \frac{0.00044}{c \cdot \frac{\sigma_{s}}{E_{s}}} = \frac{0.00067}{c \cdot \frac{\sigma_{s}}{E_{s}}} = 0.00067$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

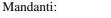
$$h_{c,eff 2} = (h-x) / 3 = 14.11 \quad cm$$

$$h_{c,eff 3} = h / 2 = 25.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff i}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s} / A_{c,eff} = 0.008$$

$$\alpha_{e} = E_{s} / E_{cm} = 6.68$$


$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 37.26 \quad cm$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.200	mm	≥	$w_{d,max} =$	0.200	mm


Verifica tensioni in esercizio

$\sigma_c = M_{Ed} * x / J_{fess} =$	3.05	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	235.04	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di	fessurazione					
		Verifica a fes	ssurazione			
$M_{Ed} =$	64.00	kNm				
$A_{S,compr} =$					5.65	cm ²
$A_{S,tesa} =$					5.65	cm ²
on:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$J_{fess} = b * x^3 /$	3 + n * A _{S,tesa} *	(d - x) ² + n * A _{S,comp}	, * (x - d') ² =		148'099	cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{tess} =$ $\varepsilon_{m} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (l + \alpha_{e} \cdot \rho_{eff})}{E} =$	254.95	MPa				
$\varepsilon_{sm} = \frac{\rho_{eff}}{E_s} = \frac{1}{E_s}$	0.00054	$< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00073			
$K_t =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	14.11	cm				
$h_{c,eff 3} = h / 2 =$	25.00	cm				
$A_{c,eff} = min (h_{c,eff i}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.008					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d' + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{Q_{\text{co}}} =$	37.26	cm				
$ ho_{\!\scriptscriptstyle eff}$						

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

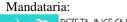
	M ED [kNm/m]	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	59.00		70.00
RARA	42.00		
FREQ.	33.00		
Q. PERM.	30.00		

SOLETTA DI COPERTURA - Armatura trasversale

Caratteristiche dei materiali

- Cls R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
$lpha_{ m cc}$ =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
γ _S =	1.15		coefficiente parziale di sicurezza relativo all'acciaio
E _s =	210'000	MPa	

Deformazioni limite cls e acciaio


Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\epsilon_{y\,d} = f_{y\,d} \, / \, E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b = 100 cm 50 cm d' =3 cm 47

Mandanti:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

/ERIFICA STATO L	IMITE ULTIN	10					
Si sono condotte la ve	erifica al tagli	o e alla fle	essione				
			Verifica a ta	<u>glio</u>			
Elemento senza armatu	ıre trasversali ı	esistenti a	a taglio				
	V _{Ed, base} =	70.00	kN				
	$A_{S,compr} =$					3.93	cm ²
	$A_{S,tesa} =$					3.93	cm ²
on:							
	$b_w = b =$	100	cm		h =	50	cm
	d' =	3	cm		d =	47	cm
	$(200 / d)^{1/2} =$ $A_{SI} / (b_w * d) =$	1.65	<u> </u>	2 0.02			
· ·	$_{\rm o} = N_{\rm Ed} / A_{\rm c} =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
OCF	N _{Ed} =	0.00	kN	`	-,- ·cu		
	A _C = b * h =	5'000	cm ²				
N _{Ed} = forza longitudinale d	O			hi o alla preco	mpressione		
Lu				p. 0001	1		
		v + 0.15	* σ _{cp}) * b _w * d =			174.35	kN
	$V_{Rd2} = ($	•min · O.10	Cp/ -w				
con	V _{Rd 2} = (•min • 0.10	ор - w -				

 $V_{Ed} =$

70.00

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

174.35

kΝ

		Verifica a flessi	<u>ione</u>			
M _{Ed} =		kNm				
N _{Ed} =	0.00	kN				
dove:					0.00	2
$A_{S,compr} =$					3.93	cm ²
A _{S,tesa} =					3.93	cm ²
con: b =	100	cm		h =	50	cm
b = d' =	3	cm		n = d =	50 47	cm
u =	3	CIII		u –	41	GIII
$x_1 = [\epsilon_{cu} / (\epsilon_{cu} - \epsilon_{yd})] * d' =$	6.4	cm				
- Ipotesi x < x₁:						
$\epsilon_{c}=\epsilon_{cu}=$	0.0035					
$\sigma'_s < f_{yd}$				armatura d	compressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		aı	rmatura tesa ali	la tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1$	f _{cd} + (A _{S,comp}	or - A _{S,tesa}) * f _{yd} =	733	kN		
- Calcolo del momento resistente pe	er N _{Rd} < N _{Rd1}	(ovvero x < x ₁)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$		•				
dove: $\sigma'_S = E_S * \varepsilon'_S = E_S * \varepsilon_{cu} * (1 - d')$	x)					
β_1 * f_{cd} * b * x^2 - (N_{Ed} - ϵ_{cu} * E_S * $A_{S,com}$		sa) * x - ε _{cu} * E _S * (d' * A _{S,compr} = 0			
11'422	x ²	+	134'969	х	-8'659'015	= 0
x =	2.23	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$	-255.93	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	(h / 2 - d') + A	-s,compr * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	72.88	kNm	>	M _{Ed} =	59.00	kNm

VERIFICA STATO LIMITE DI ESI	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi-	oni di eser	cizio				
	<u>Ve</u>	rifica tensioni in e	esercizio			
$M_{Ed} =$	42.00	kNm				
$A_{S,compr} =$					3.93	cm ²
A _{S,tesa} =					3.93	cm ²
con:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	7.85	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ * d	') / (1 + γ)) ^{0,5}] =		6.59	cm
$J_{fess} = b * x^3 / 3 + n * A$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		106'489	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	2.60	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	239.09	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	30.00	kNm		
	$A_{S,compr} =$				
	A _{S,tesa} =				
con:					
	b =	100	cm	h =	
	d' =	3	cm	d =	
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 7.85 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 6.59 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 106'489 & cm^4 \end{split}$$

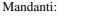
$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 170.78$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_e \cdot \rho_{eff})}{E_s} = \frac{-0.00015}{\kappa_t = 0.4} < 0.6 \cdot \frac{\sigma_s}{E_s} = \frac{0.00049}{\epsilon}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.200	mm	≥	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	1.86	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	170.78	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f	fessurazion	е				
		Verifica a fes	ssurazione			
$M_{Ed} =$	33.00	kNm				
$A_{S,compr} =$					3.93	cm ²
A _{S,tesa} =					3.93	cm ²
con:	400				=0	
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	7.85	cm ²				
$J_{\text{fess}} = b * x^3 / 3$	3 + n * A _{S,tesa}	a * (d - x) ² + n * A _{S,comp}	, * (x - d') ² =		106'489	cm ⁴
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	187.86	MPa				
$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E} = \frac{\sigma_{s} - k_{t} \frac{f_{cm}}{\rho_{eff}}}{E}$		_				
$\varepsilon_{sm} = \frac{\rho_{eff}}{E_s} = \frac{1}{E_s}$	-0.00007	$< 0.6 \cdot \frac{\sigma_{s}}{E_{s}}$	= 0.00054			
$\kappa_t =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	14.47	cm				
$h_{c,eff 3} = h / 2 =$	25.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.005					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d' + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	42.67	cm				
smax 3 1 2 4 $ ho_{e\!f\!f}$						

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

8.7.6 Trave frontale

	M _{ED}	N _{ED} [kN/m]	T_{ED} [kN/m]
SLU	89.00		124.00
RARA	49.00		
FREQ.	49.00		
Q. PERM.	49.00		

TRAVE FRONTALE - Ripartitori orizzontali

Caratteristiche dei materiali

- CIs R _{ck} ≥ 40 MPa			
R _{ck} =	30.00	MPa	
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa	
α_{cc} =	0.85		coefficiente riduttivo per le azioni di lunga durata
γ _C =	1.5		coefficiente parziale di sicurezza relativo al calcestruzzo
$f_{cm} = f_{ck} + 8 =$	32.90	MPa	
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa	
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa	
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa	
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa	
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa	
- Acciaio B450C			
$f_{yk} =$	450.00	MPa	
$f_{yd} = f_{yk} / \gamma_S =$	391.30	MPa	
$\gamma_{\rm S} =$	1.15		coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

210'000

- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

0.80952 0.41597 0.002 0.0035 0.075 $\epsilon_{uk} =$ $\epsilon_{vd} = f_{vd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

b =	100	cm
h =	50	cm
d' =	3	cm
d =	47	cm

Mandanti:

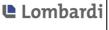
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

174.35

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 124.00 V_{Ed, base} = 5.65 cm² 5.65 A_{S,tesa} = cm² con: $b_w = b =$ 100 cm 50 cm 3 47 d' = d =cm cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 134.34 kΝ con: $k = 1 + (200 / d)^{1/2} =$ 1.65 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0012 0.02 A_{SI} = armatura longitudinale tesa MPa $0,2 f_{cd} =$ 2.82 MPa $\sigma_{cp} = N_{Ed} / A_c =$ < 0.00 kΝ $N_{Ed} =$ $A_{C} = b * h =$ 5'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 174.35 kNcon $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.371

kΝ

>


 $V_{Ed} =$

124.00

kΝ

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$

		Verifica a flession	<u>one</u>			
	22.20					
$M_{Ed} =$	89.00	kNm				
N _{Ed} =	0.00	kN				
dove:					- 05	2
A _{S,compr} =					5.65	cm ²
$A_{S,tesa} =$					5.65	cm ²
con:	:00	•				
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
$x_1 = [\varepsilon_{cu} / (\varepsilon_{cu} - \varepsilon_{vd})] * d' =$	6.4	cm				
** L-Gu (-Gu yuzi	-					
- Ipotesi x < x ₁ :						
$\epsilon_{c} = \epsilon_{cu} =$						
$\sigma'_s < f_{yd}$				armatura c	compressa in ca	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		arr	matura tesa alla	a tensione f _{yd}
$N_{Rd1} = \beta_1 * b * x_1 *$	* f _{cd} + (A _{S comp}	A _{e +aea}) * f _{vd} =	733	kN		
Nut 11	"Cu · C O,00mp.	· O,lesa/ y u	700	м		
- Calcolo del momento resistente pe	r N _{Rd} < N _{Rd1} (íovvero x < x₁)				
β_1 * b * x * f_{cd} + σ'_S * $A_{S,compr}$ = $A_{S,tesa}$ *						
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d' / d')$						
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,com})$;a) * x - ε _{cu} * E _S * d'	* A _{S,compr} = 0			
11'422	x ²	+	194'355	X	-12'468'981	= 0
x =	2.56	cm	<	x ₁ =	6.42	cm
$\sigma'_{S} = E_{S} * \varepsilon_{cu} * (1 - d' / x) =$		MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * ($	h / 2 - d') + A	_{S,compr} * σ' _S * (h / 2	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	103.02	kNm	>	M _{Ed} =	89.00	kNm

VERIFICA STATO LIMITE DI ES	ERCIZIO:	combinazion	e rara			
Si è condotta la verifica delle tens	ioni di eser	cizio				
	Ver	ifica tensioni in	esercizio			
$M_{Ed} =$	49.00	kNm				
A _{S,compr} =					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1$	+ (2 * b / (n *	$A_{S,tot}$)) * (d + γ *	$d') / (1 + \gamma))^{0,5}] =$		7.67	cm
$J_{tess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -)	(x) ² + n * A _{S,compr}	* $(x - d')^2 =$		148'099	cm ⁴
$\sigma_{c} = M_{Ed} * x / J_{fess} =$	2.54	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	195.20	MPa	<	0,8 * f _{yk} =	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

	M _{Ed} =	49.00	kNm		
	$A_{S,compr} =$				5.65
	A _{S,tesa} =				5.65
n:					
	b =	100	cm	h =	50
	d' =	3	cm	d =	47
	n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 11.31 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 7.67 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 148'099 & cm^4 \end{split}$$

$$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} = 195.20$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{eff}\right)}{E_{s}} = \frac{0.00025}{c} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00056}$$

$$\kappa_{t} = 0.4$$

$$h_{c,eff 1} = 2.5 \cdot (h-d) = 7.50 \quad cm$$

$$h_{c,eff 2} = (h-x)/3 = 14.11 \quad cm$$

$$h_{c,eff 3} = h/2 = 25.00 \quad cm$$

$$A_{c,eff} = min (h_{c,eff}) \cdot b = 750.00 \quad cm^{2}$$

$$\rho_{eff} = A_{s}/A_{c,eff} = 0.008$$

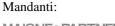
$$\alpha_{e} = E_{s}/E_{cm} = 6.68$$

$$\Delta_{smax} = k_{3} \cdot d \cdot k_{1} \cdot k_{2} \cdot k_{4} \cdot \frac{\phi}{\rho_{eff}} = 37.26 \quad cm$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.200	mm	≥	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	2.54	MPa	<	$0,45 * f_{ck} =$	11.21	MPa
σ_s = n * M _{Ed} * (d - x) / J _{fess} =	195.20	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



Si è condotta la verifica di f	essurazione					
		Verifica a fes	<u>ssurazione</u>			
$M_{Ed} =$	49.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
on:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-$ $J_{fess} = b * x^{3} / 3$		$/ (n * A_{S,tot})) * (d + \gamma *$ $* (d - x)^2 + n * A_{S,comp}$	·		7.67 148'099	cm cm ⁴
$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} =$	195.20	МРа				
$\varepsilon_{\text{sm}} = \frac{\sigma_{s} - k_{s} \frac{f_{\text{cm}} \cdot (\mathbf{l} + \alpha_{e} \cdot \rho_{\text{eff}})}{\rho_{\text{eff}}}}{E_{s}} = \frac{1}{E_{s}}$	0.00025	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	= 0.00056			
$\kappa_t =$	0.4					
$h_{c,eff\ 1} = 2.5 * (h-d) =$	7.50	cm				
$h_{c,eff\ 2} = (h-x) / 3 =$	14.11	cm				
$h_{c,eff 3} = h / 2 =$	25.00	cm				
$A_{c,eff} = min (h_{c,eff}) * b =$	750.00	cm ²				
$\rho_{eff} = A_s / A_{c,eff} =$	0.008					
$\alpha_e = E_s / E_{cm} =$	6.68					
$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} =$	37.26	cm				

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

	M _{ED}	N _{ED} [kN/m]	T _{ED}
SLU	34.00		27.00
RARA	19.00		
FREQ.	19.00		
Q. PERM.	19.00		

TRAVE FRONTALE - Armatura verticale

Caratteristiche dei materiali

- CIs R_{ck} ≥ 40 MPa

R _{ck} =	30.00	MPa
$f_{ck} = 0.83 * R_{ck} =$	24.90	MPa
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma_{C} =$	14.11	MPa
α_{cc} =	0.85	
γ _C =	1.5	
$f_{cm} = f_{ck} + 8 =$	32.90	MPa
$f_{ctm} = 0.30 * f_{ck}^{2/3} =$	2.56	MPa
$f_{ctk} = 0.7 * f_{ctm} =$	1.79	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
f_{bd} = 2.25 * f_{ctk} / γ_C =	2.69	MPa
$E_C = 22000 * (f_{cm} / 10)^{0.3} =$	31'447	MPa
aio B450C		

coefficiente riduttivo per le azioni di lunga durata coefficiente parziale di sicurezza relativo al calcestruzzo

- Accia

$$\begin{array}{ccc} f_{y\,k} = & 450.00 & \text{MPa} \\ f_{y\,d} = f_{y\,k} \, / \, \gamma_S = & 391.30 & \text{MPa} \\ & \gamma_S = & 1.15 & \end{array}$$

210'000

coefficiente parziale di sicurezza relativo all'acciaio

Deformazioni limite cls e acciaio

MPa

Questo schema è valido per:

- un diagramma sforzi deformazioni del cls del tipo parabola-rettangolo

Es=

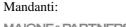
- per f_{ck} ≤ 50 N/mm²
- un asse neutro reale dove x<h

 $\beta_1 =$ 0.80952 0.41597 $\beta_2 =$ 0.002 $\varepsilon_{c,2} =$ 0.0035 0.075 $\epsilon_{yd} = f_{yd} / E_S =$ 0.00186 $\epsilon_{ud} = 0.9 * \epsilon_{uk} =$ 0.0675

Caratteristiche geometriche della sezione di cls

100 cm h = 50 cm d' = 3 cm 47 cm

Mandanti:



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE ULTIMO Si sono condotte la verifica al taglio e alla flessione Verifica a taglio Elemento senza armature trasversali resistenti a taglio 27.00 V_{Ed, base} = 5.65 cm² A_{S,tesa} = 5.65 cm² con: $b_w = b =$ 100 cm 50 cm d' = 3 cm d =47 cm $V_{Rd 1} = [0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_C + 0.15 * \sigma_{cp}] * b_w * d =$ 134.34 kNcon: $k = 1 + (200 / d)^{1/2} =$ 1.65 2 $\rho_1 = A_{SI} / (b_w^* d) =$ 0.0012 0.02 A_{SI} = armatura longitudinale tesa $\sigma_{cp} = N_{Ed} / A_c =$ MPa $0,2 f_{cd} =$ 2.82 MPa 0.00 kN $N_{Ed} =$ $A_{C} = b * h =$ 5'000 cm^2 N_{Ed} = forza longitudinale di compressione nella sezione dovuta ai carichi o alla precompressione $V_{Rd 2} = (v_{min} + 0.15 * \sigma_{cp}) * b_w * d =$ 174.35 kΝ con

 $v_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} =$ 0.371

 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$ 174.35 kΝ $V_{Ed} =$ 27.00 kN

		Verifica a flessi	one			
	24.00	1.81				
M _{Ed} =	34.00	kNm				
N _{Ed} =	0.00	kN				
dove:					5.65	cm ²
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} = con:					5.05	CIII
b =	100	cm .		h =	50	cm
d' =	3	cm		d =	47	cm
	-	* ****		•	**	
$x_1 = [\varepsilon_{cu} / (\varepsilon_{cu} - \varepsilon_{vd})] * d' =$	6.4	cm				
- Ipotesi x < x ₁ :						
$\epsilon_{\rm c} = \epsilon_{\rm cu} =$	0.0035					
$\sigma_s < f_{yd}$				armatura c	compressa in c	ampo elastico
$\sigma_s = f_{yd} =$	391.30	MPa		ar	matura tesa ali	la tensione f _{yo}
$N_{Rd1} = \beta_1 * b * x_1 *$	f_{cd} + ($A_{S,compr}$	$_{r}$ - $A_{S,tesa}$) * f_{yd} =	733	kN		
- Calcolo del momento resistente per		(ovvero $x < x_1$)				
$\beta_1 * b * x * f_{cd} + \sigma'_{S} * A_{S,compr} = A_{S,tesa} *$,					
dove: $\sigma'_S = E_S * \epsilon'_S = E_S * \epsilon_{cu} * (1 - d')$						
$\beta_1 * f_{cd} * b * x^2 - (N_{Ed} - \epsilon_{cu} * E_S * A_{S,comp})$					4014001004	0
11'422	x ²	+	194'355	X	-12'468'981	= 0
$x = \begin{bmatrix} x \\ x \end{bmatrix} = $	2.56	cm MPa	<	x ₁ =	6.42	cm
$O_S = E_S = \varepsilon_{cu} = (1 - u / x) =$	-125.99	MPa				
$M_{Rd} = A_{S,tesa} * f_{yd} * (I$	n / 2 - d') + As	_{S,compr} * σ' _S * (h /	2 - d') + β ₁ * x	* b * f _{cd} * (h / 2	- β ₂ * x) =	
M _{Rd} =	103.02	kNm	>	$M_{Ed} =$	34.00	kNm

VERIFICA STATO LIMITE DI ESI	ERCIZIO:	combinazione	rara			
Si è condotta la verifica delle tensi-	oni di ese	rcizio				
	<u>Ve</u>	erifica tensioni in e	esercizio			
$M_{Ed} =$	19.00	kNm				
$A_{S,compr} =$					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [-1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + $	+ (2 * b / (n	* $A_{S,tot}$)) * (d + γ * d	') / (1 + γ)) ^{0,5}] =		7.67	cm
$J_{fess} = b * x^3 / 3 + n *$	A _{S,tesa} * (d -	x) ² + n * A _{S,compr} *	$(x - d')^2 =$		148'099	cm ⁴
$\sigma_{\rm c}$ = M _{Ed} * x / J _{fess} =	0.98	MPa	<	0,60 * f _{ck} =	14.94	MPa
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	75.69	MPa	<	$0.8 * f_{yk} =$	360.00	MPa

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

VERIFICA STATO LIMITE DI ESERCIZIO: combinazione quasi permanente

Si sono condotte la verifiche di fessurazione e delle tensioni di esercizio

Verifica a fessurazione

M _{Ed} =	19.00	kNm		
$A_{S,compr} =$				5.65
A _{S,tesa} =				5.65
b =	100	cm	h =	50
d' =	3	cm	d =	47
n =	15			

$$\begin{split} \gamma &= A_{S,compr} / A_{S,tesa} = & 1.00 \\ A_{S,tot} &= A_{S,tesa} + A_{S,compr} = & 11.31 & cm^2 \\ x &= & (n * A_{S,tot} / b) * [-1 + (1 + (2 * b / (n * A_{S,tot})) * (d + \gamma * d') / (1 + \gamma))^{0.5}] = & 7.67 & cm \\ J_{fess} &= & b * x^3 / 3 + n * A_{S,tesa} * (d - x)^2 + n * A_{S,compr} * (x - d')^2 = & 148'099 & cm^4 \end{split}$$

$$\sigma_{s} = n * M_{Ed} * (d - x) / J_{fess} = 75.69$$
 MPa

$$\varepsilon_{sm} = \frac{\sigma_{s} - k_{t} \frac{f_{ctm}}{\rho_{eff}} \cdot (1 + \alpha_{e} \cdot \rho_{eff})}{E_{s}} = \frac{-0.00032}{-0.00032} < 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = 0.00022$$

$$\kappa_{t} = 0.4$$

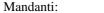
$$h_{c,eff 1} = 2.5 * (h-d) = 7.50 cm$$

$$h_{c,eff 2} = (h-x)/3 = 14.11 cm$$

$$h_{c,eff \ 3} = h / 2 = 25.00$$
 cm
 $A_{c,eff} = min (h_{c,eff \ i}) * b = 750.00$ cm²

$$\rho_{eff} = A_s / A_{c,eff} = 0.008$$

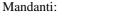
$$\alpha_e = E_s / E_{cm} = 6.68$$


$$\Delta_{\text{smax}} = k_3 \cdot d + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{\text{eff}}} = 37.26 \quad \text{cm}$$

$w_d = \epsilon_{sm} * \Delta_{smax} =$	0.100	mm	≤	$w_{d,max} =$	0.200	mm

Verifica tensioni in esercizio

σ_{c} = M _{Ed} * x / J _{fess} =	0.98	MPa	<	$0.45 * f_{ck} =$	11.21	MPa
			•		•	
$\sigma_s = n * M_{Ed} * (d - x) / J_{fess} =$	75.69	MPa	<	$0.8 * f_{yk} =$	360.00	MPa



	foccuraziona	IZIO: combinazio				
Si è condotta la verifica di	ressurazione	Verifica a fes	surazione			
		<u></u>				
M _{Ed} =	19.00	kNm				
A _{S,compr} =					5.65	cm ²
A _{S,tesa} =					5.65	cm ²
con:						
b =	100	cm		h =	50	cm
d' =	3	cm		d =	47	cm
n =	15					
$\gamma = A_{S,compr} / A_{S,tesa} =$	1.00					
$A_{S,tot} = A_{S,tesa} + A_{S,compr} =$	11.31	cm ²				
$x = (n * A_{S,tot} / b) * [$	-1 + (1 + (2 * b	/ (n * A _{S,tot})) * (d + γ*	d') / $(1 + \gamma)^{0,5}$] =		7.67	cm
$J_{fess} = b * x^3 /$ $\sigma_s = n * M_{Fd} * (d - x) / J_{fess} =$	3 + n * A _{S,tesa} * 75.69	* (d - x) ² + n * A _{S,compr}	* (x - d') ² =		148'099	cm ⁴
24 () 1000						
$\varepsilon_{sm} = \frac{\sum_{s} \kappa_{t} \rho_{eff}}{E_{s}} = \frac{E_{s}}{E_{s}}$	-0.00032	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	0.00022			
$\varepsilon_{sm} = \frac{\sigma_{s} \kappa_{t}}{\rho_{eff}} \left(\frac{1 + \kappa_{e} \rho_{eff}}{E_{s}} \right) = \frac{1}{E_{s}}$ $\kappa_{t} = \frac{1}{E_{s}}$	-0.00032	$< 0.6 \cdot \frac{\sigma_s}{E_s}$	0.00022			
- 3		$< 0.6 \cdot \frac{\sigma_s}{E_s}$. 0.00022			
•	0.4	3	. 0.00022			
$\kappa_{t} =$ $h_{c,eff\ 1} = 2.5 \ ^{\star} \ (h-d) =$	0.4 7.50	cm	. 0.00022			
$\kappa_{t} = h_{c,eff 1} = 2.5 * (h-d) = h_{c,eff 2} = (h-x) / 3 =$	0.4 7.50 14.11	cm cm	0.00022			
$\begin{aligned} \kappa_t &= \\ h_{c,eff\ 1} &= 2.5 * (h\text{-}d) = \\ h_{c,eff\ 2} &= (h\text{-}x) \ / \ 3 = \\ h_{c,eff\ 3} &= h \ / \ 2 = \\ A_{c,eff} &= min \ (\ h_{c,eff\ i}) * \ b = \\ \rho_{eff} &= A_s \ / \ A_{c,eff} = \end{aligned}$	0.4 7.50 14.11 25.00	cm cm cm	0.00022			
$\begin{aligned} \kappa_t &= \\ h_{c,eff\ 1} &= 2,5 * (h-d) = \\ h_{c,eff\ 2} &= (h-x) \ / \ 3 = \\ h_{c,eff\ 3} &= h \ / \ 2 = \\ A_{c,eff} &= min \ (\ h_{c,eff\ i}) * b = \end{aligned}$	0.4 7.50 14.11 25.00 750.00	cm cm cm	: 0.00022			
$\begin{aligned} \kappa_t &= \\ h_{c,eff\ 1} &= 2.5 * (h\text{-}d) = \\ h_{c,eff\ 2} &= (h\text{-}x) \ / \ 3 = \\ h_{c,eff\ 3} &= h \ / \ 2 = \\ A_{c,eff} &= min \ (\ h_{c,eff\ i}) * \ b = \\ \rho_{eff} &= A_s \ / \ A_{c,eff} = \end{aligned}$	0.4 7.50 14.11 25.00 750.00 0.008	cm cm cm	: 0.00022			

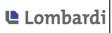
MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9 Selezione dei sistemi di appoggio travi e dimensionamento pile dell'impalcato

9.1 Selezione dei sistemi di appoggio travi

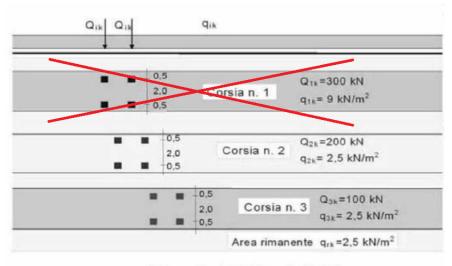
Gli appoggi sono stati selezionati in maniera tale da essere compatibili con il sistema di forze trasmesso dalle travi ai pulvini sottostanti. In altri termini, è stata garantita la resistenza del sistema di vincolo alle sollecitazioni verticali ed orizzontali calcolate considerando le combinazioni di carico maggiormente critiche, in particolare:

- le forze verticali trasmesse agli appoggi dalle travi sono state valutate considerando la combinazione SLU FONDAMENTALE, nella quale si è prevista la presenza di veicoli sull'impalcato;
- le forze orizzontali sono state calcolate invece analizzando la combinazione SISMICA.


Si specifica che l'impalcato in progetto non è riconducibile ad un ponte stradale, in quanto su di esso si prevede la presenza di una strada privata, con permesso di accesso ai soli mezzi autorizzati, che dovranno peraltro rispettare limitazioni di carico.

Per questa ragione nella combinazione SLU FONDAMENTALE non si è ritenuto necessario considerare in maniera puntuale e sistematica gli schemi di carico definiti dalla normativa [NTC 2018 – Par. 5.2.3.3.3].

Piuttosto, la situazione maggiormente critica è stata valutata con riferimento allo schema di carico 1, ma trascurando la presenza del mezzo che genera un carico di 300 kN per ruota (il transito di veicoli tanto pesanti sull'implacato sarà vietato e impedito). In definitiva è stata considerata la presenza di due veicoli parzialmente affiancati, con assi posteriori allineati in corrispondenza della mezzaria delle travi. Lo schema è quello riportato di seguito.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

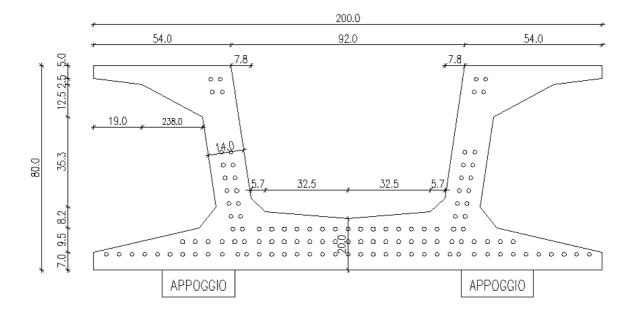
Schema di carico 1 (dimensioni in [m])

La distanza tra l'asse anteriore e quello posteriore è assunta pari a 7 m per entrambi i veicoli. La trave oggetto di verifica è quella maggiormente sollecitata, ovvero quella centrale (si considera in via cautelativa che il carico trasmesso da uno pneumatico posteriore ed uno anteriore di ciascun veicolo si scarichi su di essa). Il carico distribuito è applicato tenendo conto che ogni trave ha una larghezza di pertinenza *B* pari a circa 2.1 *m*.

Il coefficiente sismico orizzontale k_h per il calcolo delle forze orizzontali è stato assunto pari a quello selezionato nelle verifiche dello sbarramento esistente e del manufatto regolatore.

La procedura di calcolo delle sollecitazioni e conseguente selezione della tipologia di appoggio è stata effettuata sia per le travi UH80P sia per le travi VH80P considerando in via conservativa le luci massime di progetto, ovvero rispettivamente 24.90 m e 18.00 m.

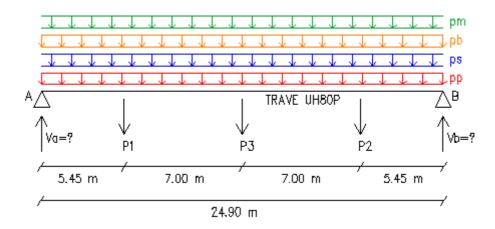
Si tenga presente che si prevede la presenza di due appoggi per ciascuna delle estremità della trave UH80P, mentre agli estremi della trave VH80P sarà installato un singolo appoggio.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

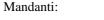
9.1.1 Trave UH80P

La sezione della trave UH80P è riportata nella figura di seguito.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.1.1.1 Calcolo della forza verticale di progetto


Il problema è stato schematizzato come segue.

dove:

- $pp_k = A \cdot p_c = 0.6833 \ m^2 \cdot 25 \ \frac{kN}{m^3} \cong 17 \frac{kN}{m}$ è il carico riconducibile al peso proprio della trave, essendo A l'area della trave e p_c il peso dell'unità di volume del calcestruzzo armato (e/o precompresso) tabellato in normativa [NTC 2018 – Tab. 3.1.I.];
- $ps_k = s_s \cdot B \cdot p_c = 0.2 \ m \cdot 2.1 \ m \cdot 25 \ \frac{kN}{m^3} \cong 11 \frac{kN}{m}$ è il carico riconducibile al peso proprio della soletta, essendo s_s lo spessore della soletta e B la larghezza di competenza della trave;
- $pb_k = s_m \cdot B \cdot p_b = 0.13 \ m \cdot 2.1 \ m \cdot 13 \ \frac{kN}{m^3} \cong 4 \frac{kN}{m}$ è il carico riconducibile al peso proprio del manto stradale, essendo s_m lo spessore del manto stradale e p_h il peso dell'unità di volume del bitume;
- $pm_k = 2.5 \frac{kN}{m^2} \cdot B = 2.5 \frac{kN}{m^2} \cdot 2.1 \ m \approx 5 \frac{kN}{m}$ è carico accidentale uniformemente distribuito dovuto alla presenza di mezzi;
- $P1_k = 100 \, kN$ è il carico concentrato in corrispondenza della ruota anteriore del veicolo più leggero;
- $P2_k = 200 \, kN$ è il carico concentrato in corrispondenza della ruota anteriore del veicolo più pesante;
- $P3_k = 100 \, kN + 200 \, kN = 300 \, kN$ è il carico concentrato in corrispondenza delle ruote posteriori dei due veicoli.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

I carichi sono stati amplificati come da normativa [NTC 2018 – Par. 2.5, Par. 5.1.3.14]:

•
$$pp_d = pp_k \cdot 1.3 \cong 22 \frac{kN}{m}$$

•
$$ps_d = ps_k \cdot 1.3 \cong 15 \frac{kN}{m}$$

•
$$pb_d = pb_k \cdot 1.3 \cong 5 \frac{kN}{m}$$

•
$$pm_d = pm_k \cdot 1.35 \cong 7 \frac{kN}{m}$$

•
$$P1_d = P1_k \cdot 1.35 \cong 135 \, kN$$

•
$$P2_d = P2_k \cdot 1.35 \cong 270 \ kN$$

•
$$P3_d = P3_k \cdot 1.35 \cong 405 \, kN$$

Imponendo l'equilibrio alla rotazione rispetto agli estremi della trave sono stati individuati i valori delle reazioni vincolari verticali:

$$V_a = 977 \, kN$$

$$V_b = 1053 \ kN$$

La forza verticale di progetto V_{Ed} è stata ottenuta considerando il valore più elevato delle reazioni vincolari e dividendolo per due (si ricordi che ad ogni estremità sono previsti due appoggi).

$$V_{Ed} = \frac{max\{V_a; V_b\}}{2} \cong 537 \ kN$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.1.1.2 Calcolo della forza orizzontale di progetto

Sulla trave agiscono i seguenti carichi orizzontali uniformemente distribuiti:

•
$$pp_{H,d} = pp_{H,k} = pp_k \cdot k_h = 17 \frac{kN}{m} \cdot 0.49 \cong 8 \ kN/m;$$

•
$$ps_{H,d} = ps_{H,k} = ps_k \cdot k_h = 11 \frac{kN}{m} \cdot 0.49 \cong 5 \ kN/m;$$

•
$$pb_{H,d} = pb_{H,k} = pb_k \cdot k_h = 4\frac{kN}{m} \cdot 0.49 \cong 2 \ kN/m.$$

Imponendo l'equilibrio alla traslazione orizzontale si ottiene il valore delle due reazioni vincolari orizzontali H in corrispondenza degli estremi:

$$H = 187 \ kN$$

La forza orizzontale di progetto H_{Ed} dividendo per due il valore della reazione vincolare.

$$H_{Ed} = \frac{H}{2} \cong 94 \ kN$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

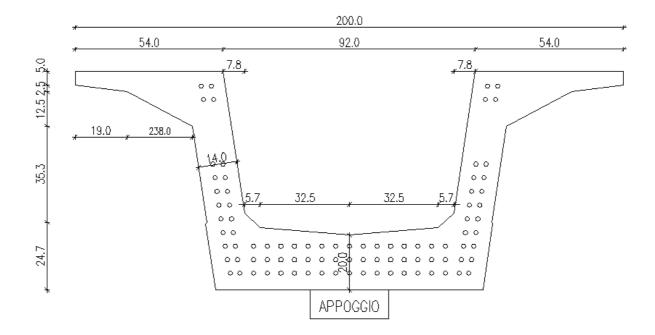
9.1.1.3 Tipologia di appoggio selezionata

Vista l'entità delle sollecitazioni, si prevede che venga impiegato un appoggio tipo ALGABLOC NB 300X500X41, o equivalente. Esso è costituito da strati alterni di gomma ed acciaio ed è privo di qualsiasi sistema d'ancoraggio di tipo meccanico alla struttura.

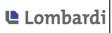
Come si evince dalla tabella seguente, i massimi valori delle forze verticali ed orizzontali V ed H compatibili con il sistema di vincolo selezionato sono maggiori rispetto alle azioni precedentemente calcolate.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

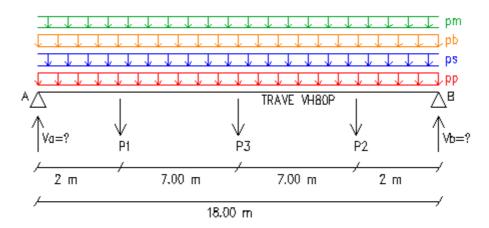
	Dimensioni				Combo 1		Combo 2		Kh	w		
DATA	Ht	Α	В	hg	V	н	s'	٧	н	S*	Kall	**
	mm	mm	mm	mm	kN	kN	mm	IdN	kN	mm	kN/mm	kG
	30	250	400	16	2329	24	4,2	2318	118	21,0	5,63	9,8
	41	250	400	24	2695	22	5,8	2405	109	29,0	3,75	13,2
Ŧ	52	250	400	32	2866	21	7,4	2396	104	37,0	2,81	16,6
NB 250x400xH	63	250	400	40	2959	20	9.0	2350	101	45,0	2,25	20,0
250x	74	250	400	48	2490	20	10,6	2030	99	53,0	1,88	23,4
82	85	250	400	56	2119	20	12,2	1665	98	61,0	1,61	26,8
- V	96	250	400	64	1841	19	13,8	1391	97	69,0	1,41	30,2
E LILL	107	250	400	72	1625	19.	15,4	1179	96	77,0	1,25	33,6
	30	250	500	16	3174	30	4,2	3158	148	21,0	7,03	12,2
Ī	41	250	500	24	3672	27	5,8	3277	136	29,0	4,69	16,5
Ξ	52	250	500	32	3905	26	7,4	3265	130	37,0	3,52	20,7
NB 250x500xHt	63	250	500	40	4032	25	9,0	3202	127	45,0	2,81	25,0
250×	74	250	500	48	3393	25	10,6	2766	124	53,0	2,34	29,2
2	85	250	500	56	2888	25	12,2	2269	123	61,0	2,01	33,5
1	96	250	500	64	2509	24	13,8	1896	121	69,0	1,76	37,7
	107	250	500	72	2214	24	15,4	1606	120	77,0	1,56	42,0
	41	300	400	24	3185	26	5,8	3112	131	29,0	4,50	15,8
	52	300	400	32	3543	25	7.4	3185	125	37,0	3,38	19,9
#	63	300	400	40	3748	24	9,0	3182	122	45,0	2,70	24,0
400xl	74	300	400	48	3875	24	10,6	3141	119	53,0	2,25	28,1
NB 300x400xHt	85	300	400	56	3497	24	12,2	2883	118	61,0	1,93	32,1
S	96	300	400	64	3042	23	13,8	2434	116	69,0	1,69	36,2
	107	300	400	72	2688	23	15,4	2085	116	77,0	1,50	40,3
	118	300	400	80	2405	23	17,0	1806	115	85,0	1,35	44,3
X	41	300	500	24	4384	33	5,8	4284	163	29,0	5,63	19,8
	52	300	500	32	4877	31	7,4	4384	156	37,0	4,22	24,9
¥ 1	63	300	500	40	5158	30	9,0	4380	152	45,0	3,38	30,0
NB 300x500xHt	74	300	500	48	5334	30	10,6	4324	149	53,0	2,81	35,1
300	85	300	500	56	4814	29	12,2	3968	147	61,0	2,41	40,2
8	96	300	500	64	4188	29	13,8	3350	146	69,0	2,11	45,2
1	107	300	500	72	3700	29	15,4	2870	144	77,0	1,88	50,3
1	118	300	500	80	3311	29	17,0	2486	143	85,0	1,69	55,4
WHEN	41	300	600	24	5634	39	5,8	5505	196	29,0	6,75	23,7
	52	300	600	32	6268	37	7,4	5634	187	37,0	5,06	29,9
±	63	300	600	40	6629	36	9,0	5629	182	45,0	4,05	36,0
NB 300x600xHt	74	300	600	48	6855	36	10,6	5557	179	53,0	3,38	42,1
300%	85	300	600	56	6187	35	12,2	5099	176	61,0	2,89	48,2
NB B	96	300	600	64	5382	35	13,8	4306	175	69,0	2,53	54,3
9	107	300	600	72	4756	35	15,4	3689	173	77,0	2,25	60,4
	118	300	600	80	4255	34	17,0	3195	172	85,0	2,03	66,5



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)


9.1.2 Trave VH80P

La sezione della trave UH80P è riportata nella figura di seguito.



9.1.2.1 Calcolo della forza verticale di progetto

Il problema è stato schematizzato come segue.

dove:

- $pp_k = A \cdot p_c = 0.5 \ m^2 \cdot 25 \ \frac{kN}{m^3} \cong 12 \frac{kN}{m}$ è il carico riconducibile al peso proprio della trave, essendo A l'area della trave;
- $ps_k = s_s \cdot B \cdot p_c = 0.2 \ m \cdot 2.1 \ m \cdot 25 \ \frac{kN}{m^3} \cong 11 \frac{kN}{m}$
- $pb_k = s_m \cdot B \cdot p_b = 0.13 \ m \cdot 2.1 \ m \cdot 13 \ \frac{kN}{m^3} \cong 4 \frac{kN}{m}$
- $pm_k = 2.5 \frac{kN}{m^2} \cdot B = 2.5 \frac{kN}{m^2} \cdot 2.1 \ m \approx 5 \frac{kN}{m}$
- $P1_k = 100 \, kN$;
- $P2_k = 200 \, kN$;
- $P3_k = 100 \, kN + 200 \, kN = 300 \, kN$.

I carichi sono stati amplificati come da normativa [NTC 2018 – Par. 2.5, Par. 5.1.3.14]:

- $pp_d = pp_k \cdot 1.3 \cong 16 \frac{kN}{m}$
- $ps_d = ps_k \cdot 1.3 \cong 15 \frac{kN}{m}$
- $pb_d = pb_k \cdot 1.3 \cong 5 \frac{kN}{m}$
- $pm_d = pm_k \cdot 1.35 \cong 7 \frac{kN}{m}$
- $P1_d = P1_k \cdot 1.35 \cong 135 \, kN$
- $P2_d = P2_k \cdot 1.35 \cong 270 \ kN$
- $P3_d = P3_k \cdot 1.35 \cong 405 \, kN$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Imponendo l'equilibrio alla rotazione rispetto agli estremi della trave sono stati individuati i valori delle reazioni vincolari verticali:

$$V_a = 740 \ kN$$

$$V_h = 845 \ kN$$

La forza verticale di progetto V_{Ed} è stata ottenuta considerando il valore più elevato delle reazioni vincolari.

$$V_{Ed} = max\{V_a; V_b\} \cong 845 \ kN$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.1.2.2 Calcolo della forza orizzontale di progetto

Sulla trave agiscono i seguenti carichi orizzontali uniformemente distribuiti:

•
$$pp_{H,d} = pp_{H,k} = pp_k \cdot k_h = 12 \frac{kN}{m} \cdot 0.49 \cong 8 \, kN/m;$$

•
$$ps_{H,d} = ps_{H,k} = ps_k \cdot k_h = 11 \frac{kN}{m} \cdot 0.49 \cong 5 \ kN/m;$$

•
$$pb_{H,d} = pb_{H,k} = pb_k \cdot k_h = 4\frac{kN}{m} \cdot 0.49 \cong 2 \ kN/m.$$

Imponendo l'equilibrio alla traslazione orizzontale si ottiene il valore delle due reazioni vincolari orizzontali H in corrispondenza degli estremi, corrispondente al valore della forza orizzontale di progetto H_{Ed} :

$$H_{Ed} = H = 135 \text{ kN}$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

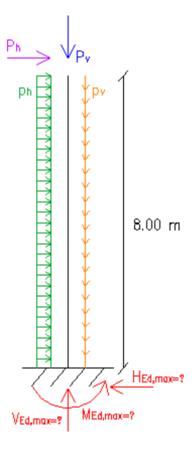
9.1.2.3 Tipologia di appoggio selezionata

Vista l'entità delle sollecitazioni, si prevede che venga impiegato un appoggio tipo ALGABLOC NB 400X500X69, o equivalente. Esso è costituito da strati alterni di gomma ed acciaio ed è privo di qualsiasi sistema d'ancoraggio di tipo meccanico alla struttura.

Come si evince dalla tabella seguente, i massimi valori delle forze verticali ed orizzontali V ed H compatibili con il sistema di vincolo selezionato sono maggiori rispetto alle azioni precedentemente calcolate.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

DATA	Dimensioni			STATE OF THE PARTY	10000	Combo 1			Combo 2		1	-
	Ht A		В	hg	٧	н	s*	٧	н	s*	Kh	W
	mm	mm	mm	mm	kN	kN	mm	kN	kN	mm	kN/mm	kG
	54	400	500	33	5219	41	7,6	5057	207	38,0	5,45	35,
X	69	400	500	44	5767	40	9,8	5158	200	49,0	4,09	44,
Ŧ	84	400	500	55	6078	39	12,0	5142	196	60,0	3,27	53,
500x	99	400	500	66	6272	39	14,2	5068	194	71,0	2,73	62,
NB 400×500×H	114	400	500	77	5489	38	16,4	4525	192	82,0	2,34	71,
a a	129	400	500	88	4775	38	18,6	3818	190	93,0	2,05	80,
	144	400	500	99	4219	38	20,8	3268	189	104,0	1,82	89,
	159	400	500	110	3774	38	23,0	2827	188	115,0	1,64	99,
	54	400	700	33	8434	58	7,6	B172	290	38,0	7,64	49,
Ī	69	400	700	44	9319	56	9,8	8335	281	49,0	5,73	61,
# [84	400	700	55	9822	55	12,0	8309	275	60,0	4,58	74,
NB 400x700xHt	99	400	700	66	10134	54	14,2	8189	271	71,0	3,82	87,
400	114	400	700	77	8871	54	16,4	7313	268	82,0	3,27	100
2	129	400	700	88	7716	53	18,6	6170	266	93,0	2,86	113
	144	400	700	99	6818	53	20,8	5281	265	104,0	2,55	125
[159	400	700	110	6099	53	23,0	4570	263	115,0	2,29	138
	54	400	800	33	10119	66	7,6	9805	332	38,0	8,73	56,
S24.6	69	400	800	44	11179	64	9,8	10001	321	49,0	6,55	70,
# [84	400	800	55	11785	63	12,0	9970	314	60,0	5,24	85,
NB 400×800×Ht	99	400	800	66	12159	62	14,2	9825	310	71,0	4,36	99,
1400	114	400	800	77	10643	61	16,4	8774	307	82,0	3,74	114
2	129	400	800	88	9258	61	18,6	7403	304	93,0	3,27	129
	144	400	800	99	8180	61	20,8	6336	303	104.0	2,91	143
	159	400	800	110	7318	60	23,0	5483	301	115,0	2,62	158
	54	500	600	33	7254	62	7,6	8460	311	38,0	8,18	52,
	69	500	600	44	8931	60	9,8	9039	301	49,0	6,14	66,
[84	500	600	55	9911	59	12,0	9273	295	60,0	4,91	79,
NB 500x600xHt	99	500	600	66	10545	58	14,2	9334	290	71,0	4,09	93,
9x00	114	500	600	77	10976	58	16,4	9297	288	82,0	3,51	107
NB S	129	500	600	88	11285	57	18,6	9198	285	93,0	3,07	121
	144	500	600	99	10001	57	20,8	8227	284	104,0	2,73	134
	159	500	600	110	8958	56	23,0	7193	282	115,0	2,45	148
	174	500	600	121	8105	56	25,2	6347	281	126,0	2,23	162
	69	500	700	44	11180	70	9,8	11316	351	49,0	7,16	77,
	84	500	700	55	12410	69	12,0	11609	344	60,0	5,73	93,
#HX	99	500	700	66	13201	68	14,2	11685	339	71,0	4,77	109
NB 500x700xHt	114	500	700	77	13743	67	16,4	11638	335	82,0	4,09	125
B 500	129	500	700	88	14130	67	18,6	11514	333	93,0	3,58	141
Ž	144	500	700	99	12520	66	20,8	10299	331	104,0	3,18	157
	159	500	700	110	11215	66	23,0	9005	329	115,0	2,86	173
	174	500	700	121	10147	66	25,2	7946	328	126,0	2,60	189


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.2 Dimensionamento pile dell'impalcato

E' stato calcolato il quantitativo di armatura necessario per garantire la resistenza delle pile a sostegno dell'impalcato in corrispondenza del manufatto regolatore. In via conservativa sono state considerate le pile previste sul lato lungo del manufatto regolatore di nuova realizzazione: infatti, benché abbiano distanza reciproca di soli 18 m, è ragionevole pensare che siano quelle maggiormente sollecitate avendo altezza di ben 8 m circa.

Le verifiche sono state condotte analizzando il caso di combinazione SISMICA, ovvero l'unico in cui l'entità delle sollecitazioni orizzontali sia rilevante. Il coefficiente sismico orizzontale k_h per il calcolo delle forze orizzontali è stato assunto pari a quello selezionato nelle verifiche dello sbarramento esistente e del manufatto regolatore.

Il problema è stato schematizzato come segue.

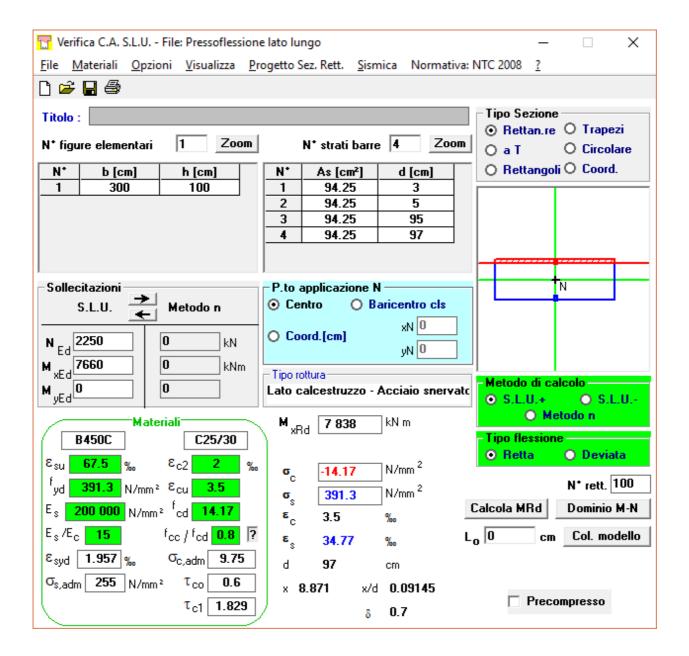
dove:

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

- $P_h = n \cdot H = 6 \cdot 135 \ kN = 810 \ kN$ essendo n il numero di travi appoggiate sul pulvino ed H la forza orizzontale trasmessa al vincolo di appoggio dalla trave VH80P;
- $P_v = P_h/k_h = 810 \ kN/0.49 \cong 1650 \ kN$;
- $p_v = B \cdot L \cdot c = 1 \ m \cdot 3 \ m \cdot 25 \ \frac{kN}{m^3} \cong 75 \frac{kN}{m}$ essendo B ed L le dimensioni della sezione del pilastro e c il peso per unità di volume del calcestruzzo armato secondo normativa [NTC 2018 – Tab. 3.1.I];
- $p_h = p_v \cdot k_h = 75 \frac{kN}{m} \cdot 0.49 \cong 37 \frac{kN}{m}$

I valori delle azioni nel punto più sollecitato, ovvero nell'incastro alla base, si ottengono dalle equazioni di equilibrio:

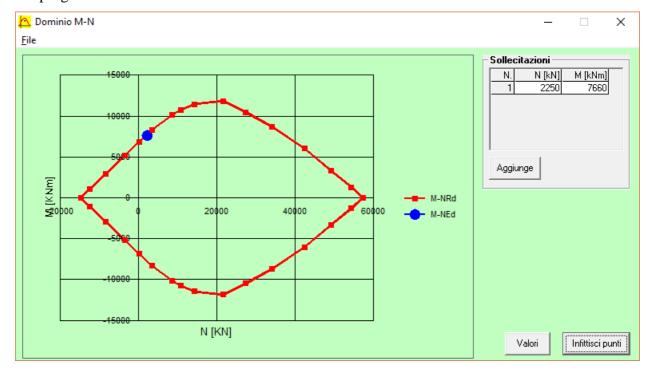
$$M_{Ed,max} \cong 7660 \ kN \cdot m$$
 $H_{Ed,max} \cong 1100 \ kN$
 $V_{Ed,max} \cong 2250 \ kN$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.2.1 Predimensionamento

Il predimensionamento è stato effettuato valutando la resistenza a pressoflessione della sezione nel piano debole (inerzia minore). E' stato utilizzato il software C.A. S.L.U. sviluppato dal prof. ing. Piero Gelfi. Si riportano di seguito i risultati.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Come si evince chiaramente anche dal dominio M-N, l'armatura selezionata è sufficiente a garantire una resistenza maggiore rispetto alle sollecitazioni di progetto.

9.2.2 Verifica a taglio

Si è valutato se l'armatura selezionata fosse o meno in grado di garantire la resistenza a taglio. Le verifiche sono state condotte in accordo alla normativa [NTC 2018 – Par. 4.1.2.3.5.1]. I calcoli effettuati sono riportati di seguito.

A _{S,tesa/compressa} =	188.50	cm ²		L	400	
$b_w = b =$	300	cm		h =	100	cm
d' =	3	cm		d =	97	cm
V _{Rd 1} = [0.18 * <i>k</i> * (10	00 * ρ ₁ * f _{ck}) ¹	/3 / γ _C + 0.15 * σ _{cp}]	* b _w * d =		1'282.91	kN
con:						
$k = 1 + (200 / d)^{1/2} =$	1.45	≤	2			
$\rho_1 = A_{SI} / (b_w * d) =$	0.0065	≤ ≤	0.02			
A _{SI} = armatura longitudinale tesa		_				
$\sigma_{cp} = N_{Ed} / A_c =$	0.00	MPa	<	$0.2 f_{cd} =$	2.82	MPa
N _{Ed} =	0.00	kN				
$A_C = b * h =$	30'000	cm ²				
N _{Ed} = forza longitudinale di compressione	nella sezio	ne dovuta ai carich	i o alla preco	mpressione		
V _{Rd 2} = ((v _{min} + 0.15 *	σ _{cp}) * b _w * d =			891.13	kN
con						
$V_{min} = 0.035 * k^{3/2} * f_{ck}^{1/2} = 0.306$						

kΝ

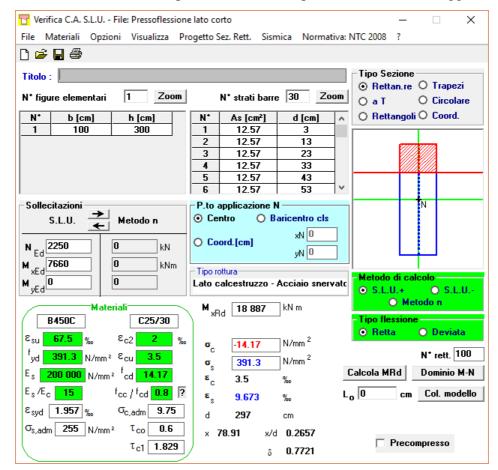
Come si evince, è garantito il rispetto della verifica a taglio.

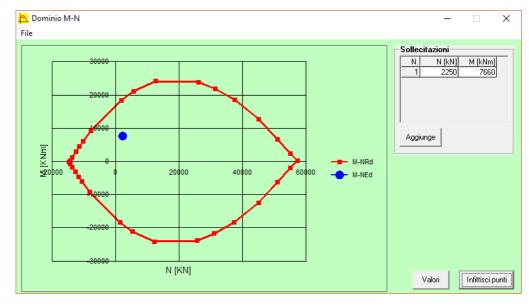
1282.91

 $V_{Ed} =$

1'100.00

kΝ


 $V_{Rd} = min (V_{Rd 1}; V_{Rd 2}) =$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

9.2.3 Verifica a pressoflessione nel piano forte

Si è verificata la resistenza a pressoflessione nel piano forte (inerzia maggiore).

10 Dimensionamento paratoie

Nel presente capitolo vengono eseguite le verifiche sismiche nei confronti delle componenti strutturali della paratoia e degli organi di manovra

Il riferimento normativo di base è la normativa tedesca DIN 19704 – Hydraulic steel structures - Part. 1: Criteria for design and calculation, poiché permette di coprire tutte le problematiche della progettazione delle paratoie, cioè la resistenza di parti meccaniche come ruote, perni, boccole, la resistenza della rotaia e le forze di manovra. Le verifiche effettuate sono le seguenti:

Stato Limite Ultimo:

- Resistenza a flessione e a taglio delle travi;
- Resistenza tensionale dei pannelli;
- Resistenza di ruote, perni e boccole;
- Resistenza della rotaia e del calcestruzzo di supporto;
- Resistenza della trave di supporto

Stato Limite di Esercizio

• Deformabilità del diaframma;

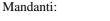
Le azioni considerate per le verifiche sono:

- Spinta idrostatica
- Sovraspinta sismica e forze inerziali

In accordo con la normativa (NTC 2018) per le verifiche allo stato limite ultimo sono state considerate le seguenti combinazioni di carico:

Combinazione fondamentale

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\ldots$$


Combinazione sismica

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Per il manufatto di regolazione sono state analizzate due diverse situazioni progettuali:

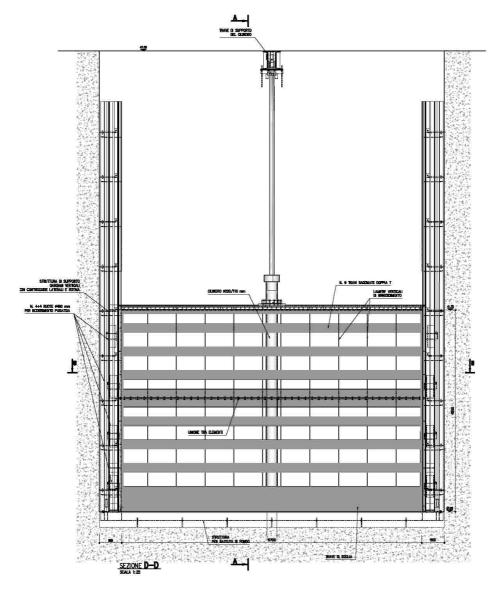
per le verifiche SLU statiche (struttura principale e gruppi ruota) si è considerata la piena duecentennale perché comporta la massima differenza tra i livelli idrici di monte e di valle e quindi la maggiore spinta sulle paratoie. In



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

- questa situazione si è dunque esclusa la presenza contemporanea del sisma e si è quindi utilizzata soltanto la combinazione di carico fondamentale;
- per le verifiche SLU in fase di manovra si è invece considerata la situazione progettuale con bocche aperte, cioè con dei livelli idrici di 46.25 m s.l.m. e 44.11 m s.l.m. rispettivamente a monte e a valle del manufatto; in questa situazione si è quindi analizzata la combinazione di carico più critica tra quella fondamentale e quella sismica.

Per il manufatto di derivazione si è analizzata invece un'unica situazione progettuale, ovvero quella in cui si raggiunge un livello di 48.75 m s.l.m. a monte del manufatto mentre la vasca di dissipazione è completamente vuota, poiché maggiormente critico per la struttura. A differenza del manufatto di regolazione, quindi, tutte le verifiche SLU (sia statiche sia in fase di manovra) vengono effettuate con la stessa combinazione di carico, ovvero la più gravosa tra quella fondamentale e quella sismica.


MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.1 Manufatto di sbarramento e regolazione

10.1.1 Caratteristiche tecniche

Le paratoie del manufatto di sbarramento e regolazione, visibili nell'immagine seguente, presentano una luce di 6.70x4.50m; sono costituite da uno scudo metallico di spessore 12mm vincolato a una struttura portante realizzata con travi orizzontali sagomate a doppia T e irrigidita con lamiere verticali.

La paratoia, movimentata da cilindri oleodinamici in acciaio, scorre all'interno di gargami in lamiera per mezzo di 8 ruote di diametro 490 mm.



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per ulteriori informazioni si rimanda alla tabella seguente nonché alla tavola A.6 "Intervento A: Adeguamento del manufatto di sbarramento e regolazione: Organi di manovra: paratoia".

Larghezza libera della luce:	6.70 m				
Altezza libera della luce:	4.50 m				
Interasse tenute verticali:	6800 mm				
Interasse tenute orizzontali:	4590 mm				
Interasse ruote:	7070 mm				
Quota di soglia:	37.25 m s.l.m.				
Massimo livello di monte per le verifiche statiche:	49.80 m s.l.m.				
Massimo livello operativo di monte:	46.25 m s.l.m.				
Livello di valle per le verifiche statiche:	44.53 m s.l.m.				
Livello operativo di valle:	44.11 m s.l.m.				
Tenuta su quattro lati da monte verso valle					
Apertura a carico equilibrato					
Chiusura normale a carico equilibrato					

10.1.2 Materiali

Le resistenze dei materiali componenti la paratoia sono state calcolate in accordo con la normativa (NTC 2018, paragrafo 4.2.4.11), applicando alle resistenze caratteristiche opportuni fattori γ; in assenza di specifiche indicazioni o in caso di valori più conservativi si sono utilizzati i coefficienti riportati nella DIN 19704.

Struttura principale

Acciaio strutturale: EN 10025 S275 JR

$$f_{yk} = 275 N/mm^2$$

$$\gamma_{M0} = 1.05$$

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 261.9 \, N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 151.2 \ N/mm^2$$

Gruppi ruota

Ruote: 2C40 UNI EN 10083

$$f_{yk} = 400 \, N/mm^2$$

EN 10025 S355 JR Rotaie:

$$f_{vk} = 355 \, N/mm^2$$

Perni: **AISI 420**

$$f_{yk} = 590 \, N/mm^2$$

$$\gamma_{M} = 1.5$$

(DIN 19704)

$$f_{yd,perno} = \frac{f_{yk}}{\gamma_M} = 393.3 \ N/mm^2$$

Trave di supporto: EN 10025 S275 JR

$$f_{yk} = 275 \, N/mm^2$$

$$\gamma_{M0} = 1.5$$
 (DIN 19704)

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 183.3 \ N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 105.8 \, N/mm^2$$

C25/30 Calcestruzzo: $R_{ck} = 30 MPa$ $f_{ck} = 0.83 * R_{ck} = 24.9 MPa$ $\gamma_{C} = 1.5$ $\alpha_{cc} = 0.85$ $f_{cd} = \alpha_{cc} * \frac{f_{ck}}{v_C} = 14.1 MPa$

Trave di supporto del cilindro

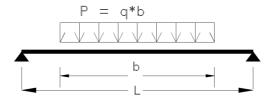
Acciaio strutturale: EN 10025 S275 JR

$$f_{vk} = 275 N/mm^2$$

$$\gamma_{M0} = 1.05$$

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 261.9 \ N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 151.2 \ N/mm^2$$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

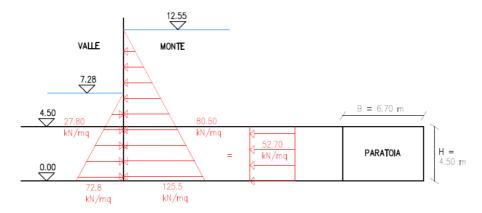
10.1.3 Verifica della struttura principale

La paratoia è strutturata in modo tale che le spinte dovute al battente idraulico agenti sul mantello siano trasmesse da questo e dalle nervature verticali alle travi principali orizzontali. L'insieme di queste sostiene quindi l'intero carico idraulico scaricandolo sulle fiancate laterali e quindi sulle ruote; la distribuzione di carico su ciascuna trave è quindi la seguente, dove P e q sono date dalle combinazioni di carico:

Interasse tra gli appoggi:	L= 7070 mm
Interasse tenute verticali:	b= 6800 mm
Interasse tenute orizzontali:	h= 4590 mm
Massimo battente di monte per le verifiche statiche:	H _m = 12.55 m
Battente di valle per le verifiche statiche:	H _v = 7.28 m

Come spiegato in precedenza, poiché la situazione progettuale considerata è quella della piena duecentennale, le verifiche sono state effettuate tenendo conto soltanto della combinazione di carico fondamentale. Per individuare gli elementi soggetti alle sollecitazioni maggiori si sono considerate le pressioni medie agenti su ciascuna trave, moltiplicate per le rispettive aree di incidenza (lunghezza * somma delle semidistanze dalle travi vicine). Sono poi state verificate la trave di soglia e la trave intermedia soggetta ai carichi maggiori, nonché il pannello più critico.

Nella <u>combinazione fondamentale</u> è stata quindi considerata la spinta dell'acqua, visibile nella figura seguente, amplificata per un fattore $\gamma_{G1}=1.3$ in accordo con la normativa (NTC 2018, tabella 2.6.I)



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Con questa combinazione, le travi intermedie più sollecitate risultano soggette ad un carico pari a:

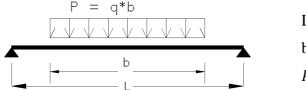
$$P = \gamma_{G1} * (52.70 \frac{kN}{mq} * b * h_i) = 242.25 kN$$

Per la trave di soglia risulta invece:

$$P_s = \gamma_{G1} * (52.70 \frac{kN}{mq} * b * h_i) = 336.36 kN$$

Il carico totale agente sulla paratoia in questo caso risulta:

$$Q = 2138.33 \, kN$$



MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.1.3.1 Verifica delle travi intermedie

L = 7070 mm

b = 6800 mm

 $P = 242.25 \, kN$

Massimo momento flettente:

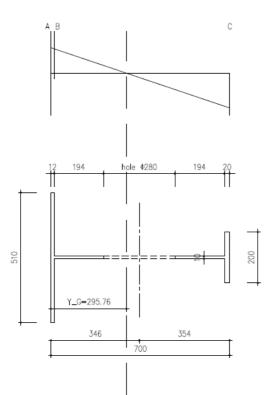
$$M = P * (2 * L - b)/8 = 2.22 * 10^8 Nmm$$

Massima azione di taglio:

$$T = \frac{P}{2} = 121.13 \ kN$$

In base alla norma DIN 19704, la larghezza della parte di mantello collaborante con la sezione resistente della trave può essere calcolata in funzione dei seguenti parametri:

Lunghezza tra gli appoggi:	Li=L= 7070 mm
Distanza minima tra due travi successive:	2B= 520 mm
Rapporto di lunghezza supporti:	Li/B=27.19
Fattore di riduzione (DIN 19704)	v _i =0.98
Larghezza lamiera collaborante:	$L_{ci} = v_i *2B = 509.6 \text{ mm}$

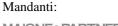


La sezione resistente della trave risulta quindi:

Area	A =14000 mm2
Posizione	Y _G =295.76 mm
baricentro	1 G -273.70 mm
Momento	J =1.375*10^9 mm4
d'inerzia	J =1.373 10 7 mm4
Moduli di	$W_A = 4.65 * 10^6 \text{ mm}^3$
resistenza	W _C =3.40*10^6 mm ³
Momento	S =2.06*10^6 mm ³
statico	5 –2.00 10 0 mm

Le massime sollecitazioni di flessione sulla trave sono:

 $\sigma_A = -M/W_A =$ - 47.80 N/mm² Soll. di pannello:

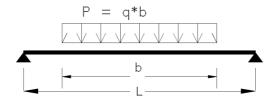

Soll. di pannello: - 45.86 N/mm²

 $\sigma_c = M / W_c =$ 65.33 N/mm² Soll. di ala libera:

$$\sigma < f_{yd} \rightarrow VERIFICATO$$

Massima sollecitazione di taglio:

$$\tau = \frac{T*S}{sp*J} = 18.11 \frac{N}{mm^2} < f_{w,yd} \rightarrow VERIFICATO$$

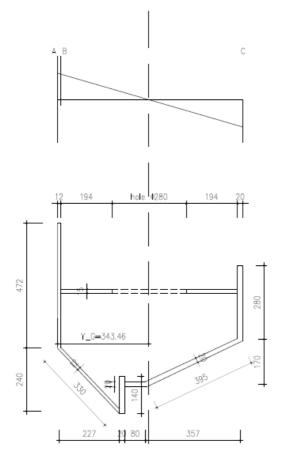


10.1.3.2 Verifica della trave di soglia

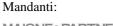
L = 7070 mm

b = 6800 mm

 $P_s = 336.36 \, kN$


Massimo momento flettente:

$$M_S = P_S * (2 * L - b)/8 = 3.09 * 10^8 Nmm$$


Massima azione di taglio:

$$T_S = \frac{P_S}{2} = 168.18 \, kN$$

In questo caso la sezione resistente della trave risulta:

Area	A =32582 mm2		
Posizione			
baricentr	$Y_G = 343.46 \text{ mm}$		
0			
Momento	J =2.172*10^9 mm4		
d'inerzia			
Moduli di	W _A =6.32*10^6 mm ³		
resistenza	$W_C = 6.09*10^6 \text{ mm}^3$		
Momento	S -6.61*10^6 mm ³		
statico	5 –0.01 10 0 11111		
o Momento d'inerzia Moduli di resistenza Momento	J =2.172*10^9 mm4 W _A =6.32*10^6 mm ³		

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Le massime sollecitazioni di flessione sulla trave sono:

Soll. di pannello: $\sigma_A = -Ms/W_A =$ - 48.80 N/mm²

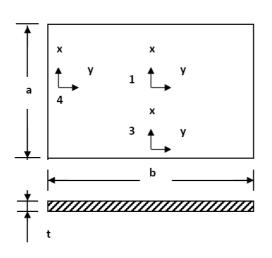
Soll. di pannello: $\sigma_B =$ - 47.10 N/mm²

 $\sigma_c = Ms / W_c =$ 50.66 N/mm² Soll. di ala libera:

 $\sigma < f_{yd} \to VERIFICATO$

Massima sollecitazione di taglio:

$$\tau = \frac{T*S}{sp*I} = 18.95 \frac{N}{mm^2} < f_{w,yd} \rightarrow VERIFICATO$$



10.1.3.3 Verifica dei pannelli

Dalla combinazione fondamentale risulta che la pressione media agente sui pannelli è:

$$p = 0.0527 * 1.3 = 0.069 N/mm^2$$

Le sollecitazioni di pannello sono calcolate secondo DIN 19704, nei punti significativi seguenti:

a =	520 mm
b =	642 mm
t =	12 mm
p =	0.069 N/mm ²
b/a =	1.24
k1X =	20.83
k1Y =	12.70
k3X =	43.50
k3Y =	13.05
k4X =	10.24
k4Y =	34.15

Le sollecitazioni sono calcolate secondo la relazione:

$$\sigma = k / 100 \cdot p \cdot a^2 / t^2$$

Le sollecitazioni nel pannello sono:

$\sigma_{\rm 1X} = \mp26.8~N/mm^2$	$\sigma_{1Y}=\mp~16.34~N/mm^2$
$\sigma_{3X}=\pm 55.96\ N/mm^2$	$\sigma_{3Y}=\pm~16.79~N/mm^2$
$\sigma_{4X} = \pm 13.18 \text{ N/mm}^2$	$\sigma_{4Y} = \pm 43.93 \text{ N/mm}^2$

Il massimo valore di sollecitazione composta si ottiene combinando le tensioni della trave intermedia con quelle del pannello superiore; la massima tensione si trova al bordo del pannello avente il lato perpendicolare alla trave, in corrispondenza della superficie di valle.

$$\sigma = \sqrt{(\sigma_B + \sigma_{4Y})^2 + \sigma_{4X}^2 - (\sigma_B + \sigma_{4Y}) * \sigma_{4X}} = 83.98 \, N/mm^2 < f_{yd} \rightarrow VERIFICATO$$

10.1.4 Verifica delle ruote e delle rotaie

Per le verifiche successive si considera che il carico totale agente sulla paratoia calcolato in precedenza venga trasmesso e suddiviso equamente tra le 8 ruote

10.1.4.1 Pressione hertziana

Q = 2138.33 kN - Carico sulla paratoia

- Numero delle ruote n = 8

- Diametro delle ruote D = 490 mm

- Larghezza della zona di contatto $a = 150 \, \text{mm}$

- Modulo di elasticità $E = 206000 \text{ N/mm}^2$

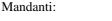
- Modulo di Poisson \vee = 0.3

Carico su ciascuna ruota:

$$P = Q / n = 267.29 \text{ kN}$$

La massima pressione di contatto tra ruota e rotaia viene calcolata secondo la teoria di Hertz; La semilarghezza dell'area di contatto è data da:

$$b = \sqrt{\frac{4 * P * D * (1 - v^2)}{\pi * E * a}} = 2.22 mm$$


La massima pressione Hertziana vale:

$$p = \sqrt{\frac{P * E}{\pi * D * a * (1 - v^2)}} = 511.9 N/mm^2$$

Le ruote sono costruite in acciaio 2C40 UNI EN 10083, mentre le rotaie sono in acciaio S 355 UNI EN 10025. Ai fini della determinazione della pressione specifica ammissibile occorre quindi considerare il materiale di cui sono composte le rotaie, che presenta caratteristiche meccaniche inferiori.

La resistenza di progetto, secondo quanto indicato nelle Norme DIN 19704 è:

$$p_{Rd} = 3 * f_{yk} = 1065 \frac{N}{mm^2} > p \rightarrow VERIFICATO$$

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.1.4.2 Verifica dei perni

Lo schema di carico è il medesimo considerato per le travi intermedie, considerando le seguenti caratteristiche:

Interasse tra gli appoggi	L= 204 mm
Lunghezza boccola	b= 160 mm
Diametro del perno	D _p = 115 mm
Modulo di resistenza del perno	W _p = 1.493 *10^5 mm ³

Massimo momento flettente:

$$M = P * (2 * L - b)/8 = 8.28 * 10^6 Nmm$$

Massima sollecitazione di flessione:

$$\sigma = \frac{M}{W_P} = 55.50 \ N/mm^2 < f_{yd,perno} \rightarrow VERIFICATO$$

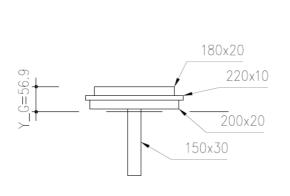
10.1.4.3 Pressione specifica sulla boccola

Con lo stesso significato dei simboli di cui al punto precedente, la massima pressione specifica agente sulla boccola é:

$$p_S = P / (b \cdot D_P) = 14.53 \text{ N/mm}^2$$

Press. spec. ammissibile secondo catalogo del Costruttore: 50N/mm²-

>VERIFICATO



10.1.4.4 Verifica delle rotaie

Per la trasmissione della spinta delle ruote al calcestruzzo, si considera una trave di acciaio avente la sezione tipica seguente:

Area	A =14300 mm2			
Posizione	Y _G =56.9 mm			
baricentro	1 (j = 50.7 mm			
Momento	J =4.088*10^7 mm4			
d'inerzia	J -4.000° 10° / IIIII14			
Moduli di	W _A =7.186*10^5 mm ³			
resistenza	W _C =2.856*10^5 mm ³			
Momento	S =3.072*10^5 mm ³			
statico	5 – 5.072 TO 5 IIIII			

Il calcolo è svolto secondo DIN 19704 e M. HETENYI "Beam on Elastic Foundation".

Il massimo momento flettente sulla trave è:

$$M = \frac{P}{4} * \sqrt[4]{\frac{4 * E * J}{l_p * k_0}} = 11.38 * 10^6 Nmm$$

Essendo:

 $l_p = 200 \text{ mm}$ Larghezza di contatto trave-cemento

 $k_0 = 200 \text{ N/mm}^3$ Modulo della fondazione (calcestruzzo)

Massima sollecitazione di flessione sulla trave:

$$\sigma = M / W_C = 39.85 \text{ N/mm}^2 < f_{vd} \rightarrow VERIFICATO$$

Azione di taglio:

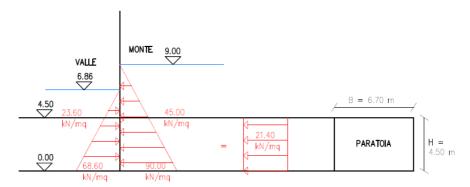
$$T = P / 2 = 133.65 \text{ kN}$$

Massima sollecitazione di taglio:

$$\tau = T \cdot S / (s \cdot J) = 33.48 \text{ N/mm}^2 < f_{w,yd} \rightarrow VERIFICATO$$

Massima pressione specifica sul calcestruzzo:

$$p_{SP} = \frac{T}{l_p} * \sqrt[4]{\frac{l_p * k_0}{4 * E * J}} = 3.92 * \frac{10^6 N}{mm^2} < f_{cd} \rightarrow VERIFICATO$$



10.1.5 Forze di manovra

Come spiegato in precedenza, il battente in condizioni di manovra è inferiore a quello considerato per il calcolo statico. In questa situazione progettuale si sono quindi confrontate le combinazioni fondamentale e sismica e si è determinato quale fosse quella più critica per la struttura.

Interasse tra gli appoggi:	L= 7070 mm
Interasse tenute verticali:	b= 6800 mm
Interasse tenute orizzontali:	h= 4590 mm
Massimo battente di monte in fase di manovra:	H _m = 9 m
Battente di valle in fase di manovra:	H _v = 6.86 m

Nella <u>combinazione fondamentale</u> è stata considerata la spinta dell'acqua, visibile nella figura seguente, amplificata per un fattore $\gamma_{G1} = 1.3$ in accordo con la normativa (NTC 2018, tabella 2.6.I)

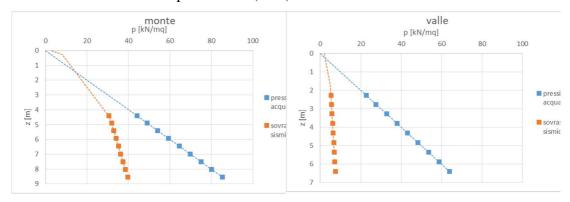
Data la distribuzione uniforme dei carichi, le pressioni sulla soglia (p_{MI}) e sul ciglio superiore (p_{MS}) coincidono con quella media agente sulla paratoia (p_{MM}).

$$p_{MM} = p_{MI} = p_{MS} = 1.3*0.0214 = 0.028 \text{ N/mm}^2$$

Carico sulla paratoia:

$$Q_M = p_{MM} \cdot b \cdot h = 868.32 \text{ kN}$$

Nella <u>combinazione sismica</u> sono state considerate la spinta dell'acqua (vedi figura precedente), le sovraspinte sismiche determinate nei capitoli precedenti e le forze inerziali, rappresentate per mezzo di forze statiche equivalenti.



Nella figura seguente sono visibili gli andamenti delle due spinte lungo l'altezza della paratoia, a monte e a valle della stessa, mentre le forze statiche equivalenti per ciascuna trave sono state determinate moltiplicandone il peso per il coefficiente sismico orizzontale determinato in precedenza (0.49).

Con questa configurazione, la pressione media agente sulla paratoia (p_{MM}) , quella agente sulla soglia (p_{MI}) e quella agente sul ciglio superiore (p_{MS}) sono state calcolate come:

 $p = p_{acqua,m} - p_{acqua,v} + p_{sisma,m} - p_{sisma,v} + F_{eq}/(b*h_i)$, dove $b*h_i$ è l'area di influenza della trave in esame come vista in precedenza.

 $p_{MM} = 0.052 \text{ N/mm}^2$

 $p_{MI} = 0.055 \text{ N/mm}^2$

 $p_{MS} = 0.049 \text{ N/mm}^2$

Carico sulla paratoia:

 $Q_{\rm M} = 1616.4 \text{ kN}$


Poiché la combinazione sismica risulta la più gravosa per la struttura, le verifiche seguenti sono state effettuate sulla base di questi ultimi risultati.

Attrito perni di rotazione:

-	Massimo coefficiente di attrito boccole	$\mu_{\text{BMAX}} = 0.2$
-	Minimo coefficiente di attrito boccole	$\mu_{\text{BMIN}} = 0.05$
-	Diametro delle ruote	D = 490 mm
-	Diametro dei perni	$D_P = 120 \text{mm}$

Forza massima di attrito dei perni:

$$F_{PS} = Q_{M} \cdot (D_{P}/D) \cdot \mu_{BMAX} = 79.17 \ kN$$

Forza minima di attrito dei perni:

$$F_{\text{PI}}\!=Q_{\text{M}}\cdot\left(D_{\text{P}}/\,D\right)\cdot\,\mu_{\text{BMIN}}\!=19.79\;kN$$

Attrito volvente:

Eccentricità della risultante del carico sulle ruote e = 0.5 mm

Con lo stesso significato dei simboli di cui sopra:

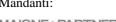
$$F_R = Q_M \cdot e / (D / 2) = 3.30 \text{ kN}$$

Attrito delle guarnizioni di tenuta:

-	Interasse tenute laterali	$b=6800\;mm$
-	Interasse tenute orizzontali	$h=4590\;mm$
-	Forza di precarica delle guarnizioni	$f_p = 1N/mm$
-	Larghezza equivalente di carico delle guarnizioni	$L_e{=}24.0mm$
-	Coefficiente d'attrito massimo guarnizioni	$\mu_{GMAX}\!=\!0.8$
-	Coefficiente d'attrito minimo guarnizioni	$\mu_{\text{GMIN}}\!=\!0.2$

Forza d'attrito massima dovuta alle guarnizioni:

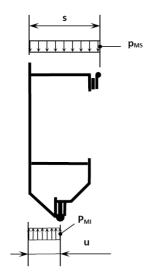
$$F_{GMAX} = [(Le \cdot p_{MS} + f_p) \cdot b + (Le \cdot p_{MM} + f_p) \cdot h \cdot 2] \cdot \mu_{GMAX} = 28.29 \, kN$$


Cautelativamente, nel calcolo della forza di attrito minima, non si tiene conto della forza di precarica in quanto potrebbe variare nel tempo, inoltre si considera una posizione in cui la guarnizione superiore non sia ancora entrata in contatto con la controsede.

$$F_{GMIN} = L_e \cdot p_{MM} \cdot h \cdot 2 \cdot \mu_{GMIN} = 2.28 \, kN$$

Spinta idraulica verticale:

La distribuzione delle pressioni idrauliche e la larghezza delle zone caricate sono rappresentate nella figura seguente:



s = 736 mm

u = 268 mm

Coefficiente di massimo

downpull: $\varphi_d = 0.5$

Per tenere conto della situazione più cautelativa, si considera il downpull nel calcolo della massima forza in frenatura, mentre quando si verifica la possibilità di chiusura per peso proprio, il downpull viene considerato nullo (condizione effettiva in prossimità della chiusura completa).

Forza idraulica verticale verso il basso in frenatura:

$$F_{IF} = (p_{MS} \cdot s - p_{MI} \cdot u \cdot \varphi d) \cdot b = 194.29 kN$$

Forza idraulica verticale verso il basso in prossimità della chiusura:

$$F_{IC} = (p_{MS} \cdot s - p_{MI} \cdot u) \cdot b = 143.89 \, kN$$

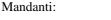
Peso della paratoia

Il peso totale della paratoia con gruppi ruota e guarnizioni è:

$$P_P = 18000 \text{ kg} = 176.58 \text{ kN}$$

Il peso proprio del cilindro e dell'olio contenuto è circa:

$$P_{CIL} = 2000 \text{ kg} = 19.62 \text{ kN}$$


Peso complessivo:

$$P_W = P_P + P_{CIL} = 196.2 \text{ kN}$$

Verifica della possibilità di chiusura sotto flusso:

Occorre verificare se, durante la chiusura in emergenza, la paratoia è in grado di terminare la manovra per gravità, col meccanismo oleodinamico che funziona solo come freno.

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Come previsto dalla norma DIN 19704, si considera un coefficiente di sicurezza sulle forze di attrito pari a 1.25.

Forza residua durante la chiusura (non si considera il peso del cilindro poiché non agisce completamente, e il peso della paratoia non è amplificato in quanto favorevole):

$$F_C = P_P + F_{IC} - 1.25 \cdot (F_{PS} + F_R + F_{GMAX}) = 182.01 \, kN$$

La forza residua è ampiamente sufficiente per chiudere la paratoia e precaricare la guarnizione di soglia.

Forza massima in frenatura:

Per determinare il valore massimo della forza, si considerano gli attriti minimi (trascurando l'attrito volvente) e la condizione di massimo downpull; in questo caso il peso della paratoia e del pistone sono amplificati di un fattore γ =1.3 in quanto sfavorevoli.

$$F_F = 1.3 * P_W + F_{IF} - F_{PI} - F_{GMIN} = 427.27 \, kN$$

Meccanismo di manovra:

- Dimensioni del cilindro oleodinamico

ø 220 / 110 mm

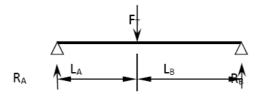
- Area di spinta:

 $A = 28510 \text{ mm}^2$

Pressione massima in apertura:

$$p = F_F / A = 149.87 \text{ bar}$$

Pressione massima consentita: 250 N/mm²-> VERIFICATO



10.1.6 Trave di supporto del cilindro

La forza massima che deve essere sostenuta dalla trave di supporto è F_F; lo schema di calcolo è il seguente:

 $L_A = 588 \text{ mm}$

 $L_B = 640 \text{ mm}$

Risulta:

$$R_A = F_F \cdot L_B / (L_A + L_B) = 222.68 \, kN$$

$$R_B = F_F - R_A = 204.59 \, kN$$

Momento flettente massimo:

$$M_{max} = R_A \cdot L_A = 13.09 * 10^7 Nmm$$

La trave di supporto è costituita da due profilati accoppiati tipo UPN 400, aventi ciascuno le seguenti caratteristiche:

Area $A = 9150 \text{ mm}^2$

 $J = 2.035 \cdot 10^8 \, mm^4$ Momento d'inerzia

 $W = 1.020 \cdot 10^6 \, mm^3$ Modulo di resistenza

Massima sollecitazione sulla trave:

$$\sigma = M_{\text{max}} / (2 \cdot W) = 64.18 \text{ N/mm}^2 < f_{vd} \rightarrow VERIFICATO$$

10.1.7 Deformabilità del diaframma

Per determinare la massima deformazione orizzontale della paratoia, si considera la freccia massima in mezzeria della trave soggetta alla sollecitazione maggiore, ottenuta

$$f = \frac{P}{384 * E * J} * (8 * L^3 - 4 * b^2 * L + b^3)$$

Allo stato limite di esercizio, data l'assenza di azioni variabili, si considerano unicamente gli effetti della spinta dell'acqua, non amplificati; lo schema di carico è il medesimo utilizzato per la verifica a SLU, e risulta:

$$P = \Delta H * \gamma_w * b * h_i = 75.67 kN$$

Interasse tra gli appoggi:	L= 7070 mm
Interasse tenute verticali:	b= 6800 mm
Momento d'inerzia della sezione:	J =1.375*10^9 mm4
Modulo elastico:	E=206000 MPa

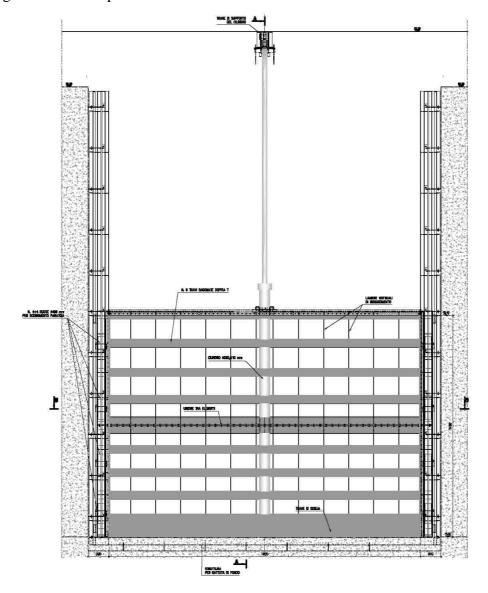
La deformazione massima risulta quindi:

$$f = 1.28 \, mm$$

Per determinare i limiti massimi sugli spostamenti si è considerata la normativa NTC 2018 (paragrafo 4.2.4.2.1), la quale prevede che in caso di specifiche esigenze tecniche e/o funzionali i limiti della tabella 4.2.XII debbano essere opportunamente ridotti; considerando la presenza delle guarnizioni e volendone garantire la completa tenuta, il limite viene imposto a un valore pari a L/1000.

L è la luce delle tenute verticali, che nel caso in esame è pari a 6800 mm.

Risulta quindi $f_{max} = 6800/1000 = 6.8 \text{ } mm > f -> VERIFICATO$



10.2 Manufatto di derivazione nell'invaso laterale

10.2.1 Caratteristiche tecniche

Le paratoie del manufatto di derivazione, visibili nell'immagine seguente, presentano una luce di 7.60x5.40m; sono costituite da uno scudo metallico di spessore 12mm vincolato a una struttura portante realizzata con travi orizzontali sagomate a doppia T e irrigidita con lamiere verticali.

La paratoia, movimentata da cilindri oleodinamici in acciaio, scorre all'interno di gargami in lamiera per mezzo di 8 ruote di diametro 490 mm.

MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Per ulteriori informazioni si rimanda alla tabella seguente nonché alla tavola B.6 "Intervento B: Adeguamento del manufatto di derivazione nell'invaso laterale: Organi di manovra: paratoia".

Larghezza libera della luce:	7.60 m
Altezza libera della luce:	5.40 m
Interasse tenute verticali:	7700 mm
Interasse tenute orizzontali:	5490 mm
Interasse ruote:	7970 mm
Quota di soglia:	41.00 m s.l.m.
Massimo livello di monte per le verifiche statiche:	48.75 m s.l.m.
Massimo livello operativo di monte:	48.75 m s.l.m.
Tenuta su quattro lati da monte verso valle	
Apertura a carico equilibrato	
Chiusura normale a carico equilibrato	

10.2.2 Materiali

Le resistenze dei materiali componenti la paratoia sono state calcolate in accordo con la normativa (NTC 2018, paragrafo 4.2.4.11), applicando alle resistenze caratteristiche opportuni fattori γ; in assenza di specifiche indicazioni o in caso di valori più conservativi si sono utilizzati i coefficienti riportati nella DIN 19704.

Struttura principale

Acciaio strutturale: EN 10025 S275 JR

$$f_{yk} = 275 N/mm^2$$

$$\gamma_{M0} = 1.05$$

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 261.9 \, N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 151.2 \ N/mm^2$$

Gruppi ruota

Ruote: 2C40 UNI EN 10083

$$f_{yk} = 400 \, N/mm^2$$

EN 10025 S355 JR Rotaie:

$$f_{vk} = 355 \, N/mm^2$$

Perni: **AISI 420**

$$f_{yk} = 590 \, N/mm^2$$

$$\gamma_{M} = 1.5$$

(DIN 19704)

$$f_{yd,perno} = \frac{f_{yk}}{\gamma_M} = 393.3 \ N/mm^2$$

Trave di supporto: EN 10025 S275 JR

$$f_{yk} = 275 \, N/mm^2$$

$$\gamma_{M0} = 1.5$$
 (DIN 19704)

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 183.3 \ N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 105.8 \, N/mm^2$$

C25/30 Calcestruzzo: $R_{ck} = 30 MPa$ $f_{ck} = 0.83 * R_{ck} = 24.9 MPa$ $\gamma_{C} = 1.5$ $\alpha_{cc} = 0.85$ $f_{cd} = \alpha_{cc} * \frac{f_{ck}}{v_C} = 14.1 MPa$

Trave di supporto del cilindro

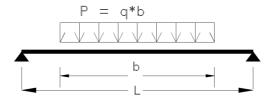
Acciaio strutturale: EN 10025 S275 JR

$$f_{vk} = 275 \, N/mm^2$$

$$\gamma_{M0} = 1.05$$

$$f_{yd} = \frac{f_{yk}}{\gamma_{M0}} = 261.9 \ N/mm^2$$

$$f_{w,yd} = \frac{f_{yd}}{\sqrt{3}} = 151.2 \ N/mm^2$$


MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.2.3 Verifica della struttura principale

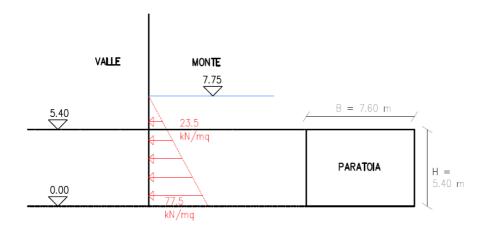
La paratoia è strutturata in modo tale che le spinte dovute al battente idraulico agenti sul mantello siano trasmesse da questo e dalle nervature verticali alle travi principali orizzontali. L'insieme di queste sostiene quindi l'intero carico idraulico scaricandolo sulle fiancate laterali e quindi sulle ruote; la distribuzione di carico su ciascuna trave è quindi la seguente, dove P e q sono date dalle combinazioni di carico:

Interasse tra gli appoggi:	L= 7970 mm
Interasse tenute verticali:	b= 7700 mm
Interasse tenute orizzontali:	h= 5490 mm
Massimo battente di monte:	H _s = 7.75 m

Come detto in precedenza, per il manufatto di derivazione è stata considerata un'unica situazione progettuale (livello di monte 48.75 m s.l.m.), e si è cercata la combinazione di carico più critica tra quella fondamentale e quella sismica.

Per ciascuna combinazione sono stati quindi calcolati i carichi agenti sulle travi; per individuare gli elementi soggetti alle sollecitazioni maggiori si sono considerate le pressioni medie agenti su ciascuna trave, moltiplicate per le rispettive aree di incidenza (lunghezza * somma delle semidistanze dalle travi vicine). Tra le combinazioni di carico si è scelta quella più gravosa per la struttura, e sono poi state verificate la trave di soglia la trave intermedia ai carichi maggiori. soggetta Per la combinazione più gravosa sono inoltre state calcolate le azioni agenti sui pannelli, ed è stato verificato quello più critico.

Nella <u>combinazione fondamentale</u> è stata considerata la spinta dell'acqua, visibile nella figura seguente, amplificata per un fattore $\gamma_{G1} = 1.3$ in accordo con la normativa (NTC 2018, tabella 2.6.I)



Con questa combinazione, la trave intermedia soggetta al maggior carico risulta essere quella inferiore (≈ 42 m s.l.m.):

$$P = \gamma_{G1} * (\Delta H * \gamma_w * b * h_i) = 358.5 \text{ kN}$$

Per la trave di soglia risulta invece:

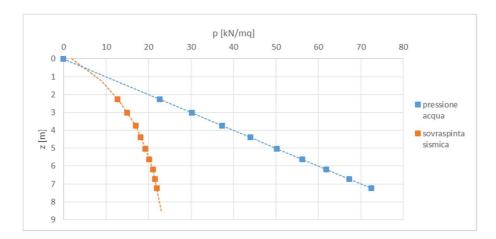
$$P_s = \gamma_{G1} * (\Delta H * \gamma_w * b * h_i) = 554.2 \text{ kN}$$

Il carico totale agente sulla paratoia in questo caso risulta:

$$Q = 2737.38 \, kN$$

Nella <u>combinazione sismica</u> sono state considerate la spinta dell'acqua (vedi figura precedente), le sovraspinte sismiche determinate nei capitoli precedenti e le forze inerziali, rappresentate per mezzo di forze statiche equivalenti.

Nella figura seguente sono visibili gli andamenti delle due spinte lungo l'altezza della paratoia, mentre le forze statiche equivalenti per ciascuna trave sono state determinate moltiplicandone il peso per il coefficiente sismico orizzontale determinato in precedenza (0.35).



MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Con questa combinazione, la trave intermedia soggetta al maggior carico risulta essere quella inferiore ($\approx 42 \text{ m s.l.m.}$):

$$P = \Delta H * \gamma_w * b * h_i + q_{SISM} * b * h_i + W * 0.35 = 366.9 kN$$

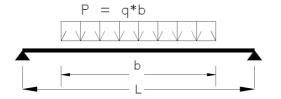
Per la trave di soglia risulta invece:

$$P_S = \Delta H * \gamma_W * b * h_i + q_{SISM} * b * h_i + W * 0.35 = 562.4 kN$$

Il carico totale agente sulla paratoia in questo caso risulta:

$$Q = 2925.7 \, kN$$

Poiché la combinazione sismica risulta la più gravosa per la struttura, le verifiche seguenti sono state effettuate sulla base di questi ultimi risultati.



MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.2.3.1 Verifica delle travi intermedie

L = 7970 mm

b = 7700 mm

 $P = 366.9 \, kN$

Massimo momento flettente:

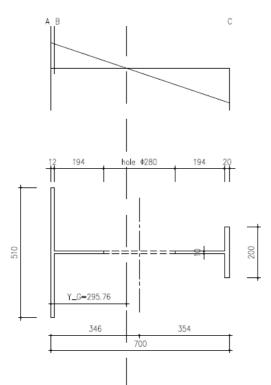
$$M = P * (2 * L - b)/8 = 3.78 * 10^8 Nmm$$

Massima azione di taglio:

$$T = \frac{P}{2} = 183.5 \ kN$$

In base alla norma DIN 19704, la larghezza della parte di mantello collaborante con la sezione resistente della trave può essere calcolata in funzione dei seguenti parametri:

Lunghezza tra gli appoggi:	Li=L= 7970 mm
Distanza minima tra due travi successive:	2B= 520 mm
Rapporto di lunghezza supporti:	Li/B=30.65
Fattore di riduzione (DIN 19704)	v _i =0.98
Larghezza lamiera collaborante:	$L_{ci} = v_i *2B = 509.6 \text{ mm}$



La sezione resistente della trave risulta quindi:

Area	A =14000 mm2
Posizione	Y _G =295.76 mm
baricentro	1G -275.70 mm
Momento	J =1.375*10^9 mm4
d'inerzia	J =1.373 10 7 mm4
Moduli di	$W_A = 4.65*10^6 \text{ mm}^3$
resistenza	W _C =3.40*10^6 mm ³
Momento	S =2.06*10^6 mm ³
statico	5 –2.00 10 0 mm

Le massime sollecitazioni di flessione sulla trave sono:

 $\sigma_A = -M/W_A =$ - 81.28 N/mm² Soll. di pannello:

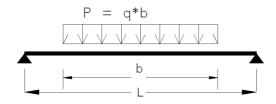
Soll. di pannello: - 77.98 N/mm²

 $\sigma_c = M / W_c =$ Soll. di ala libera: 111.09 N/mm²

$$\sigma < f_{vd} \rightarrow VERIFICATO$$

Massima sollecitazione di taglio:

$$\tau = \frac{T*S}{sp*I} = 27.44 \frac{N}{mm^2} < f_{w,yd} \rightarrow VERIFICATO$$

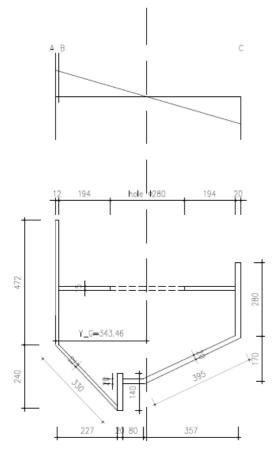


10.2.3.2 Verifica della trave di soglia

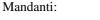
L = 7970 mm

b = 7700 mm

 $P_s = 562.4 \ kN$


Massimo momento flettente:

$$M_S = P_S * (2 * L - b)/8 = 5.79 * 10^8 Nmm$$


Massima azione di taglio:

$$T_S = \frac{P_S}{2} = 281.22 \ kN$$

In questo caso la sezione resistente della trave risulta:

Area	A =32582 mm2
Posizione	Y _G =343.46 mm
baricentro	1 G = 5 15. 10 mm
Momento	J =2.172*10^9 mm4
d'inerzia	J =2.172*10 9 mm4
Moduli di	W _A =6.32*10^6 mm ³
resistenza	$W_C = 6.09 \times 10^6 \text{ mm}^3$
Momento	S =6.61*10^6 mm ³
statico	5 –0.01 10 0 mm

MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Le massime sollecitazioni di flessione sulla trave sono:

Soll. di pannello: $\sigma_A = -Ms/W_A =$ - 91.61 N/mm²

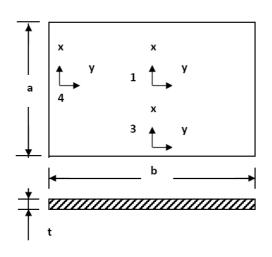
Soll. di pannello: $\sigma_B =$ - 88.41 N/mm²


 $\sigma_c = Ms / W_c =$ 95.10 N/mm² Soll. di ala libera:

 $\sigma < f_{yd} \rightarrow VERIFICATO$

Massima sollecitazione di taglio:

$$\tau = \frac{T_S * S}{sp * I} = 31.69 \ N/mm^2 < f_{w,yd} \rightarrow VERIFICATO$$



10.2.3.3 Verifica dei pannelli

Dalla combinazione sismica risulta che i pannelli più sollecitati sono quelli inferiori, sui quali agisce una pressione media pari a:

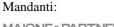
$$p = 0.12 N/mm^2$$

Le sollecitazioni di pannello sono calcolate secondo DIN 19704, nei punti significativi seguenti:

a =	520 mm
b =	610 mm
t =	12 mm
p =	0.12 N/mm ²
b/a =	1.17
k1X =	20.83
k1Y =	12.70
k3X =	43.50
k3Y =	13.05
k4X =	10.24
k4Y =	34.15

Le sollecitazioni sono calcolate secondo la relazione:

$$\sigma = k / 100 \cdot p \cdot a^2 / t^2$$


Le sollecitazioni nel pannello sono:

$\sigma_{1X} = \mp 47.57 \text{ N/mm}^2$	$\sigma_{1Y} = \mp 29.00 N/mm^2$
$\sigma_{\rm 3X}=\pm 99.34~N/mm^2$	$\sigma_{\rm 3Y}=\pm~29.80~N/mm^2$
$\sigma_{4x} = \pm 23.39 \text{ N/mm}^2$	$\sigma_{4Y} = \pm 77.98 \text{ N/mm}^2$

Il massimo valore di sollecitazione composta si ottiene combinando le tensioni della trave intermedia con quelle del pannello superiore; la massima tensione si trova al bordo del pannello avente il lato perpendicolare alla trave, in corrispondenza della superficie di valle.

$$\sigma = \sqrt{(\sigma_B + \sigma_{4Y})^2 + \sigma_{4X}^2 - (\sigma_B + \sigma_{4Y}) * \sigma_{4X}} = 145.68 \ N/mm^2 < f_{yd} \to VERIFICATO$$

10.2.4 Verifica delle ruote e delle rotaie

Per le verifiche successive si considera che il carico totale agente sulla paratoia calcolato in precedenza venga trasmesso e suddiviso equamente tra le 8 ruote

10.2.4.1 Pressione hertziana

Q = 2925.7 kN- Carico sulla paratoia

- Numero delle ruote n = 8

- Diametro delle ruote D = 490 mm

- Larghezza della zona di contatto $a = 150 \, \text{mm}$

- Modulo di elasticità $E = 206000 \text{ N/mm}^2$

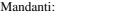
- Modulo di Poisson v = 0.3

Carico su ciascuna ruota:

$$P = Q / n = 365.7 \text{ kN}$$

La massima pressione di contatto tra ruota e rotaia viene calcolata secondo la teoria di Hertz; la semilarghezza dell'area di contatto è data da:

$$b = \sqrt{\frac{4 * P * D * (1 - v^2)}{\pi * E * a}} = 2.59 mm$$


La massima pressione Hertziana vale:

$$p = \sqrt{\frac{P * E}{\pi * D * a * (1 - v^2)}} = 598.8 \, N/mm^2$$

Le ruote sono costruite in acciaio 2C40 UNI EN 10083, mentre le rotaie sono in acciaio S 355 UNI EN 10025. Ai fini della determinazione della pressione specifica ammissibile occorre quindi considerare il materiale di cui sono composte le rotaie, che presenta caratteristiche meccaniche inferiori.

La resistenza di progetto, secondo quanto indicato nelle Norme DIN 19704 è:

$$p_{Rd} = 3 * f_{yk} = 1065 \frac{N}{mm^2} > p \rightarrow VERIFICATO$$

MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

10.2.4.2 Verifica dei perni

Lo schema di carico è il medesimo considerato per le travi intermedie, considerando le seguenti caratteristiche:

Interasse tra gli appoggi	L= 204 mm
Lunghezza boccola	b= 160 mm
Diametro del perno	D _p = 115 mm
Modulo di resistenza del perno	W _p = 1.493 *10^5 mm ³

Massimo momento flettente:

$$M = P * (2 * L - b)/8 = 11.34 * 10^6 Nmm$$

Massima sollecitazione di flessione:

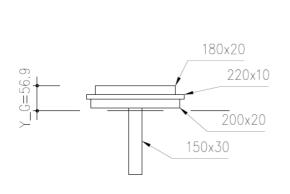
$$\sigma = \frac{M}{W_P} = 75.93 \frac{N}{mm^2} < f_{yd,perno} \rightarrow VERIFICATO$$

10.2.4.3 Pressione specifica sulla boccola

Con lo stesso significato dei simboli di cui al punto precedente, la massima pressione specifica agente sulla boccola é:

$$p_S = P / (b \cdot D_P) = 19.88 \text{ N/mm}^2$$

Press. spec. ammissibile secondo catalogo del Costruttore: 50N/mm²-> VERIFICATO



10.2.4.4 Verifica delle rotaie

Per la trasmissione della spinta delle ruote al calcestruzzo, si considera una trave di acciaio avente la sezione tipica seguente:

Area	A =14300 mm2
Posizione	Y _G =56.9 mm
baricentro	10 –50.7 mm
Momento	J =4.088*10^7 mm4
d'inerzia	J -4.000 10 / mm4
Moduli di	W _A =7.186*10^5 mm ³
resistenza	$W_C = 2.856*10^5 \text{ mm}^3$
Momento	S =3.072*10^5 mm ³
statico	5 – 5.072 10 5 mm

Il calcolo è svolto secondo DIN 19704 e M. HETENYI "Beam on Elastic Foundation".

Il massimo momento flettente sulla trave è:

$$M = \frac{P}{4} * \sqrt[4]{\frac{4 * E * J}{l_p * k_0}} = 15.57 * 10^6 Nmm$$

Essendo:

 $l_p = 200 \text{ mm}$ Larghezza di contatto trave-cemento

 $k_0 = 200 \text{ N/mm}^3$ Modulo della fondazione (calcestruzzo)

Massima sollecitazione di flessione sulla trave:

$$\sigma = M / W_C = 54.53 \text{ N/mm}^2 < f_{vd} \rightarrow VERIFICATO$$

Azione di taglio:

$$T = P / 2 = 182.86 \text{ kN}$$

Massima sollecitazione di taglio:

$$\tau = T \cdot S / (s \cdot J) = 45.81 \text{ N/mm}^2 < f_{w,yd} \rightarrow VERIFICATO$$

Massima pressione specifica sul calcestruzzo:

$$p_{SP} = \frac{T}{l_p} * \sqrt[4]{\frac{l_p * k_0}{4 * E * J}} = 5.37 \ N/mm^2 < f_{cd} \rightarrow VERIFICATO$$

10.2.5 Forze di manovra

Con la configurazione sismica vista in precedenza, la pressione media agente sulla paratoia (p_{MM}), quella agente sulla soglia (p_{MI}) e quella agente sul ciglio superiore (p_{MS}) risultano:

 $p_{MM} = 0.069 \text{ N/mm}^2$

 $p_{MI} = 0.096 \text{ N/mm}^2$

 $p_{MS} = 0.036 \text{ N/mm}^2$

Carico sulla paratoia:

 $Q_{\rm M} = 2925.7 \text{ kN}$

Attrito perni di rotazione:

-	Massimo coefficiente di attrito boccole	$\mu_{\text{BMAX}} = 0.2$
-	Minimo coefficiente di attrito boccole	$\mu_{\text{BMIN}}\!=\!0.05$
-	Diametro delle ruote	D = 490 mm
-	Diametro dei perni	$D_P = 120 mm$

Forza massima di attrito dei perni:

$$F_{PS} = Q_{M} \cdot (D_{P}/D) \cdot \mu_{BMAX} = 143.30 \ kN$$

Forza minima di attrito dei perni:

$$F_{PI} = Q_M \cdot (D_P/D) \cdot \mu_{BMIN} = 35.83 \text{ kN}$$

Attrito volvente:

- Eccentricità della risultante del carico sulle ruote e = 0.5 mm

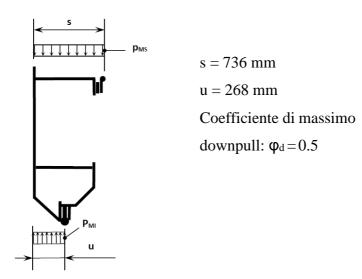
Con lo stesso significato dei simboli di cui sopra:

$$F_R = Q_M \cdot e / (D / 2) = 5.97 \text{ kN}$$

Attrito delle guarnizioni di tenuta:

-	Interasse tenute laterali	$b=7700\ mm$
-	Interasse tenute orizzontali	h = 5490 mm
-	Forza di precarica delle guarnizioni	$f_p = 1N/mm$
-	Larghezza equivalente di carico delle guarnizioni	$L_e = 24.0mm$
-	Coefficiente d'attrito massimo guarnizioni	$\mu_{GMAX}\!=\!0.8$
_	Coefficiente d'attrito minimo guarnizioni	$\mu_{GMIN} = 0.2$

Forza d'attrito massima dovuta alle guarnizioni:


$$F_{GMAX} = [(Le \cdot p_{MS} + f_p) \cdot b + (Le \cdot p_{MM} + f_p) \cdot h \cdot 2] \cdot \mu_{GMAX}$$
$$= 34.91 \, kN$$

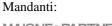
Cautelativamente, nel calcolo della forza di attrito minima, non si tiene conto della forza di precarica in quanto potrebbe variare nel tempo, inoltre si considera una posizione in cui la guarnizione superiore non sia ancora entrata in contatto con la controsede.

$$F_{GMIN} = L_e \cdot p_{MM} \cdot h \cdot 2 \cdot \mu_{GMIN} = 3.65 \, kN$$

Spinta idraulica verticale:

La distribuzione delle pressioni idrauliche e la larghezza delle zone caricate sono rappresentate nella figura seguente:

Per tenere conto della situazione più cautelativa, si considera il downpull nel calcolo della massima forza in frenatura, mentre quando si verifica la possibilità di chiusura per peso proprio, il downpull viene considerato nullo (condizione effettiva in prossimità della chiusura completa).


Forza idraulica verticale verso il basso in frenatura:

$$F_{IF} = (p_{MS} \cdot s - p_{MI} \cdot u \cdot \varphi_d) \cdot b = 107.22 \, kN$$

Forza idraulica verticale verso il basso in prossimità della chiusura:

$$F_{IC} = (p_{MS} \cdot s - p_{MI} \cdot u) \cdot b = 8.58 \, kN$$

MO-E-1357 - Adeguamento dei manufatti di regolazione e sfioro della cassa di espansione del fiume Secchia comprensivo della predisposizione della possibilità di regolazione in situazioni emergenziali anche per piene ordinarie in relazione alla capacità di deflusso del tratto arginato (ex codice 10969) e avvio dell'adeguamento in quota e potenziamento strutturale dei rilevati arginali del sistema cassa espansione esistente

MO-E-1273 - Lavori di ampliamento e adeguamento della cassa di espansione del Fiume Secchia nel comune di Rubiera (RE) (Accordo di programma Ministero- RER- Parte A)

Peso della paratoia

Il peso totale della paratoia con gruppi ruota e guarnizioni è:

$$P_P = 25000 \text{ kg} = 245.25 \text{ kN}$$

Il peso proprio del cilindro e dell'olio contenuto è circa:

$$P_{CIL} = 2000 \text{ kg} = 19.62 \text{ kN}$$

Peso complessivo:

$$P_W = P_P + P_{CIL} = 264.87 \text{ kN}$$

Verifica della possibilità di chiusura sotto flusso:

Occorre verificare se, durante la chiusura in emergenza, la paratoia è in grado di terminare la manovra per gravità, col meccanismo oleodinamico che funziona solo come freno.

Come previsto dalla norma DIN 19704, si considera un coefficiente di sicurezza sulle forze di attrito pari a 1.25.

Forza residua durante la chiusura (non si considera il peso del cilindro poiché non agisce completamente, e il peso della paratoia non è amplificato in quanto favorevole):

$$F_C = P_P + F_{IC} - 1.25 \cdot (F_{PS} + F_R + F_{GMAX}) = 23.60 \, kN$$

La forza residua è sufficiente per chiudere la paratoia e precaricare la guarnizione di soglia.

Forza massima in frenatura:

Per determinare il valore massimo della forza, si considerano gli attriti minimi (trascurando l'attrito volvente) e la condizione di massimo downpull; in questo caso il peso della paratoia e del pistone sono amplificati di un fattore γ =1.3 in quanto sfavorevoli.

$$F_F = 1.3 * P_W + F_{IF} - F_{PI} - F_{GMIN} = 412.08 \, kN$$

Meccanismo di manovra:

- Dimensioni del cilindro oleodinamico

ø 220 / 110 mm

- Area di spinta:

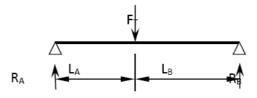
 $A = 28510 \text{ mm}^2$

Pressione massima in apertura:

$$p = F_F / A = 144.54 \text{ bar}$$

Pressione massima consentita:

250 N/mm²-> VERIFICATO



10.2.6 Trave di supporto del cilindro

La forza massima che deve essere sostenuta dalla trave di supporto è F_F; lo schema di calcolo è il seguente:

 $L_A = 585 \text{ mm}$

 $L_B = 840 \text{ mm}$

Risulta:

$$R_A = F_F \cdot L_B / (L_A + L_B) = 242.91 \, kN$$

$$R_B = F_F - R_A = 169.17 \, kN$$

Momento flettente massimo:

$$M_{max} = R_A \cdot L_A = 14.21 * 10^7 Nmm$$

La trave di supporto è costituita da due profilati accoppiati tipo UPN 400, aventi ciascuno le seguenti caratteristiche:

Area $A = 9150 \text{ mm}^2$


 $J = 2.035 \cdot 10^8 \, mm^4$ Momento d'inerzia

 $W = 1.020 \cdot 10^6 \, mm^3$ Modulo di resistenza

Massima sollecitazione sulla trave:

$$\sigma = M_{\text{max}} / (2 \cdot W) = 69.66 \text{ N/mm}^2 < f_{vd} \rightarrow VERIFICATO$$

10.2.7 Deformabilità del diaframma

Per determinare la massima deformazione orizzontale della paratoia, si considera la freccia massima in mezzeria della trave soggetta alla sollecitazione maggiore, ottenuta

$$f = \frac{P}{384 * E * J} * (8 * L^3 - 4 * b^2 * L + b^3)$$

Allo stato limite di esercizio, data l'assenza di azioni variabili, si considerano unicamente gli effetti della spinta dell'acqua, non amplificati; lo schema di carico è il medesimo utilizzato per la verifica a SLU, e la trave intermedia più sollecitata risulta, come in precedenza, quella inferiore, con un carico P pari a:

$$P = \Delta H * \gamma_w * b * h_i = 275.74 kN$$

Interasse tra gli appoggi:	L= 7970 mm
Interasse tenute verticali:	b= 7700 mm
Momento d'inerzia della sezione:	J =1.375*10^9 mm4
Modulo elastico:	E=206000 MPa

La deformazione massima risulta quindi:

$$f = 6.63 \, mm$$

Per determinare i limiti massimi sugli spostamenti si è considerata la normativa NTC 2018 (paragrafo 4.2.4.2.1), la quale prevede che in caso di specifiche esigenze tecniche e/o funzionali i limiti della tabella 4.2.XII debbano essere opportunamente ridotti; considerando la presenza delle guarnizioni e volendone garantire la completa tenuta, il limite viene imposto a un valore pari a L/1000.

L è la luce delle tenute verticali, che nel caso in esame è pari a 7700 mm.

Risulta quindi $f_{max} = 7700/1000 = 7.7 \text{ } mm > f -> VERIFICATO$

