

Regione Emilia Romagna Comune di Forlì Provincia di Forlì

IMPIANTO FOTOVOLTAICO "CA' BELLETTI"

Progetto Definitivo

Progetto delle opere di rete per la connessione alla rete AT di e-distribuzione in regime di Cessione Totale per l'impianto di produzione da fonte di Solare per una potenza in immissione richiesta di 19.200,00 KW, sito in via SANSOVINI SNC, nel Comune di FORLI (FC)

COMMITTENTE

PRIMO BAGIONI

SVILUPPO PROGETTO

INFORMAZIONE

INGEGNERIA GREEN

RICHIESTA DI BENESTARE DOCUMENTAZIONE DA ALLEGARE A ITER AUTORIZZATIVO

CODICE RINTRACCIABILITA': 418972551 18/02/2025 Emissione per Progettazione Defintiva PLANET GRASSO VITALI Revisione Descrizione Verificato Data Preparato Approvato Progettista COMMESSA Scala Ing. Matteo Zanatta **FORMATO FOGLIO** EMESSO PER TITOLO **FILE** APPROVAZIONE CAP-04_05-RT - Rel. calcolo carp. metalliche 1 / 25 Α4 RELAZIONE DI CALCOLO DELLE CARPENTERIE COSTRUZIONE **METALLICHE - INTERRUTTORE** Documento No. AS BUILT CAP-04_05-RT

INDICE

1		PR	EMESSA		
2		CA	RATTERISTICHE DELLA STRUTTURA	4	
3		NO	RMATIVA		
4		MA	TERIALI		
5		NA	TURA DEL TERRENO	7	
6		ME	TODOLOGIA DI CALCOLO	8	
7		DE	FINIZIONE DEI CARICHI	11	
	7.1		Pesi propri	11	
	7.2	2	Peso del ghiaccio		11
	7.3	3	Azione del vento		11
	7.4	1	Carico durante il montaggio		11
	7.5	5	Azione sismica		
	7.6	3	Condizione di carico da corto circuito		13
8		CA	RICHI AGENTI E DETERMINAZIONE DEI PARAMETRI DELLA SOLLECITAZIONE	14	
	8.1	l	Azione del vento		14
	8.2	2	Corto circuito		
	8.3	3	Azione sismica		
	8.4	1	Combinazione di carico agli stati limite ultimi SLU		18
	8.5	5	Combinazione di carico sismica		18
	8.6	6	Combinazione di carico da corto circuito		18
9		VE	RIFICA DEL SOSTEGNO	19	
	9.1	I	Verifica di resistenza della carpenteria		19
	9.2	2	Verifica degli spostamenti laterali		22
	9.3	3	Verifica degli spostamenti verticali		22
	9.4	1	Verifica dei tirafondi		24
1	n	CO	NCLUSIONI		

1 PREMESSA

Lo scopo del presente documento è la verifica strutturale della carpenteria di sostegno della seguente apparecchiatura elettromeccanica:

• n. 1 INTERRUTTORE

che sarà utilizzata presso la C.P. DI CAPOCOLLE DI BERTINORO (FC).

La verifica della struttura è condotta con il metodo semiprobabilistico agli stati limite, in ottemperanza alle norme vigenti, in due ipotesi di carico, normale ed eccezionale.

Le unità di misura impiegate nella presente relazione sono:

forza daN

massa kg

lunghezza m (per alcune lunghezze cm, mm)

Il sistema di riferimento cartesiano 0xy considerato è tale che la direzione delle ascisse xx è parallela all'asse della sbarra.

2 CARATTERISTICHE DELLA STRUTTURA

La struttura di supporto è costituita da un telaio in carpenteria metallica, realizzato con due elementi verticali di altezza 2,5 metri e collegati in sommità da un traverso con due sbalzi laterali. Al traverso sono vincolati i tre poli dell'apparecchiatura in esame.

Per quanto riguarda l'apparecchiatura installata, di seguito si riportano le caratteristiche essenziali.

INTERRUTTORE TRIPOLARE

Baricentro [m] 1,3375 Diametro [m] 0,220 h vento [m] 1,3375 Sup. esposta al vento [m^2] 0,589 H sez traverso [m] 0,2 Lunghezza traverso [m] 5,089 Apparecchiatura Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 7,5+3,5 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6		
Altezza [m] 2,675 Baricentro [m] 1,3375 Diametro [m] 0,220 h vento [m] 1,3375 Sup. esposta al vento [m^2] 0,589 H sez traverso [m] 0,2 Lunghezza traverso 5,089 Apparecchiatura Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Sostegno	
Baricentro [m] 1,3375 Diametro [m] 0,220 h vento [m] 1,3375 Sup. esposta al vento [m^2] 0,589 H sez traverso [m] 0,2 Lunghezza traverso [m] 5,089 Apparecchiatura Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 7,5+3,5 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Peso [daN]	630,00
Diametro [m] 0,220 h vento [m] 1,3375 Sup. esposta al vento [m^2] 0,589 H sez traverso 5,089 Apparecchiatura 5,089 Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Altezza [m]	2,675
h vento [m] 1,3375 Sup. esposta al vento [m^2] 0,589 H sez traverso [m] 0,2 Lunghezza traverso 5,089 Apparecchiatura	Baricentro [m]	1,3375
Sup. esposta al vento [m^2] 0,589 H sez traverso [m] 0,2 Lunghezza traverso 5,089 Apparecchiatura	Diametro [m]	0,220
H sez traverso m	h vento [m]	1,3375
Lunghezza traverso 5,089 Apparecchiatura 1920 Peso [daN] 2,919 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Sup. esposta al vento [m^2]	0,589
Apparecchiatura Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	H sez traverso [m]	0,2
Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Lunghezza traverso	5,089
Peso [daN] 1920 Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6		
Altezza [m] 2,919 Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Apparecchiatura	
Baricentro [m] 1,4595 Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza (5,96+4,6)	Peso [daN]	1920
Sezione [m] 0,28 H vento (m) 4,1345 Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Altezza [m]	2,919
H vento (m) Diametro testa [m] altezza attacco dx Sup. esposta al vento [m^2] Altezza attacco sx Altezza applicazione tiro [m] Altezza applicazione montaggio [m] Collegamento elettrico Lunghezza campata [m] diametro conduttore [m] altezza 5,963 0,817 4,6 4,6 7,594 Collegamento elettrico rigido 7,5+3,5 diametro conduttore [m] altezza	Baricentro [m]	1,4595
Diametro testa [m] 0,28 altezza attacco dx 5,963 Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Sezione [m]	0,28
altezza attacco dx Sup. esposta al vento [m^2] Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] Collegamento elettrico Lunghezza campata [m] diametro conduttore [m] altezza 5,96+4,6	H vento (m)	4,1345
Sup. esposta al vento [m^2] 0,817 Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza	Diametro testa [m]	0,28
Altezza attacco sx 4,6 Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	altezza attacco dx	5,963
Altezza applicazione tiro [m] 5,594 Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Sup. esposta al vento [m^2]	0,817
Altezza applicazione montaggio [m] 2,675 Collegamento elettrico rigido Lunghezza campata [m] 7,5+3,5 diametro conduttore [m] 0,040 altezza 5,96+4,6	Altezza attacco sx	4,6
Collegamento elettricorigidoLunghezza campata [m]7,5+3,5diametro conduttore [m]0,040altezza5,96+4,6	Altezza applicazione tiro [m]	5,594
Lunghezza campata [m]7,5+3,5diametro conduttore [m]0,040altezza5,96+4,6	Altezza applicazione montaggio [m]	2,675
Lunghezza campata [m]7,5+3,5diametro conduttore [m]0,040altezza5,96+4,6		
diametro conduttore [m] 0,040 altezza 5,96+4,6	Collegamento elettrico	rigido
altezza 5,96+4,6	Lunghezza campata [m]	7,5+3,5
	diametro conduttore [m]	0,040
0.705	altezza	5,96+4,6
peso [dain/m] 0,735	peso [daN/m]	0,735

3 NORMATIVA

Nell'eseguire le verifiche che costituiscono l'opera di cui alla presente relazione, si è fatto riferimento alla seguente normativa tecnica:

[1] D. M. 17/01/2018

"Testo Unico Norme tecniche per le costruzioni".

[2] D. M. 14/01/2008

"Nuove Norme tecniche per le costruzioni".

[3] Ordinanza 3274 20 Marzo 2003

"Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".

[4] Legge 5 Novembre 1971 n°1086

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale precompresso ed a struttura metallica".

[5] D.M. 11 marzo 1988

"Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

[6] Circolare 24 settembre 1988, n°30483

"Norme tecniche per terreni e fondazioni: istruzioni applicative".

[7] Circolare Ministero Infrastrutture e Trasporti 2 febbraio 2009, n.617

"Applicazione Norme Tecniche per le Costruzioni".

[8] CEI EN 61936-1 (2011-07)

"Impianti elettrici con tensioni superiori a 1kV in corrente alternata".

[9] CEI 11-4 (1998)

"Esecuzione delle linee elettriche aeree esterne".

[10] CEI 11-26 (1998)

"Correnti di corto circuito. Calcolo degli effetti . Parte prima: definizioni e metodi di calcolo".

[11] UNI ENV 1993-1-1 Eurocodice 3.

"Progettazione delle strutture di acciaio. Parte 1-1: Regole generali e regole per gli edifici"

[12] UNI ENV 1992-1-1 Eurocodice 2.

"Progettazione delle strutture di calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici"

4 MATERIALI

Caratteristiche dei materiali utilizzati nella costruzione.

Calcestruzzo per fondazioni e struttura

Rck 30: f_{ck} = 24,9 MPa Resistenza cilindrica caratteristica del cls a 28 giorni

α_{cc}=0,85 Coefficiente riduttivo per le resistenze di lunga durata

 γ_c = 1,5 Coeff. parziale di sicurezza relativo al cls

 $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 14,11 \text{ MPa}$ Resistenza cilindrica di calcolo

 E_c = 31447 MPa Modulo elastico γ_{cls} = 2400 daN/m³ Peso specifico

Acciaio per armature e tirafondi

B 450 C $f_{yk} = 450 \text{ N/ mm}^2$ Resistenza caratteristica a snervamento

 $\gamma_s = 1,15$ Coefficiente parziale di sicurezza relativo all'acciaio

 f_{yd} = 11,8 MPa Resistenza di calcolo E_s = 206000 N/mm² Modulo elastico

Acciaio per carpenteria metallica tipo S 355 JR

S 355 JR: $f_{yk} = 355 \text{ N/ mm}^2$ Resistenza caratteristica a snervamento

f_{tk} = 510 N/ mm² Resistenza caratteristica di rottura

 γ_s = 1,05 Coeff. Parziale resist. E_s = 206000 N/mm² Modulo elastico

 ρ = 7850 daN/m³ Densità

Bulloneria classe 6.8

Classe 6.8 $f_t = 600 \text{ N/mm}^2$ Resistenza caratteristica a rottura

f_y = 510 N/ mm2 Resistenza caratteristica di snervamento

5 NATURA DEL TERRENO

Per l'analisi del terreno di fondazione sono stati presi in considerazione i risultati delle indagini eseguite e riportati nel Rapporto di prova geotecnico elaborato dal Dott. Geol. Massimo Castellaro.

L'indagine geognostica ha permesso quindi di definire la stratigrafia e le caratteristiche geomeccaniche dei terreni di fondazione.

Si rimanda all'elaborato relativo all'indagine geologica per i valori dei parametri,

Le indagini hanno potuto classificare il suolo anche dal punto di vista sismico. La categoria di appartenenza è risultata essere la "C": "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di VS,30 compresi tra 360 m/s e 800 m/s".

Le verifiche delle strutture saranno eseguite in base alle vigenti normative e tenendo presente tutte le indicazioni fornite nella Relazione geologica.

6 METODOLOGIA DI CALCOLO

Le attività di verifica strutturale della carpenteria e della fondazione vengono condotte seguendo le indicazioni del D.M. 17 gennaio 2018, in particolare per quanto concerne:

- il criterio dello stato limite ultimo;
- le azioni sismiche;
- la metodologia dell'analisi statica equivalente;
- i criteri di combinazione con le concomitanti azioni non sismiche.

In ottemperanza alle norme vigenti, si devono considerare due ipotesi di carico, normale ed eccezionale. In ciascuno di questi casi devono essere analizzate diverse combinazioni, la più sfavorevole delle quali fornisce i parametri della sollecitazione sulla struttura di sostegno e sulla fondazione per determinare la resistenza meccanica delle strutture.

Data la variabilità delle caratteristiche dinamiche delle apparecchiature, per ogni coppia "apparecchiatura/carpenteria" vengono normalmente considerati casi differenti, ai quali corrispondono sets di caratteristiche ponderali e geometriche dell'apparecchiatura, a parità di carpenteria.

1. Determinazione delle combinazioni di carico e dei parametri della sollecitazione agenti alla base del sostegno

Nell'ipotesi di carico normale, le azioni di carico agenti sono le seguenti:

- Peso proprio;
- Tiro;
- Carichi durante il montaggio (secondo CEI, si deve tener conto di un carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto)
- Spinta del vento;
- Peso del ghiaccio;

Nell'ipotesi di carico eccezionale, il peso proprio e il tiro agiscono simultaneamente e si devono considerare insieme al maggiore dei seguenti carichi occasionali:

- Carichi derivanti dalle manovre;
- Condizione di carico da corto circuito (secondo CEI 11-26, si considera una corrente di corto circuito trifase pari a 31,5 kA).
- Perdita del tiro esercitato dal conduttore.
- Azione sismica.

Tali azioni, in accordo a quanto previsto dal paragrafo 2.5.3 del D.M. 17 gennaio 2018, sono state combinate tra loro come riportato nella Tabella 6.1, in cui i coefficienti di combinazione sono stati ottenuti definendo le azioni permanenti, eccezionali e quelle variabili e, tra queste ultime, distinguendo le dominanti dalle secondarie.

L'azione sismica e i carichi da corto circuito sono azioni eccezionali e per tale motivo non si considerano agenti simultaneamente.

Il carico durante il montaggio non si considera agente simultaneamente alle azioni eccezionali di corto circuito.

Ogni combinazione considerata (SLU, SLE, Sismica, Corto circuito) fornisce i parametri della sollecitazione agenti sulla struttura in elevazione.

Tabella 6.1: Coefficienti combinazione delle azioni.

_		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	E	Е	А
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio	Sisma X	Sisma Y	Corto circuito
	SLU_1	1,3	1,5	1,5	0	1,5	0,9	0,75	0	0	0
	SLU_2	1,3	1,5	0	1,5	1,5	0,9	0,75	0	0	0
NORMALE	SLU_3	1,3	1,5	1,5	0	0,9	1,5	0,75	0	0	0
NORWALE	SLU_4	1,3	1,5	0	1,5	0,9	1,5	0,75	0	0	0
	SLU_5	1,3	1,5	1,5	0	0,9	0,9	1,5	0	0	0
	SLU_6	1,3	1,5	0	1,5	0,9	0,9	1,5	0	0	0
	SLE freq_1	1	1	1,5	0	0,2	0	0	0	0	0
	SLE freq_2	1	1	1,5	1,5	0	0,2	0	0	0	0
NORMALE	SLE freq_3	1	1	1,5	1,5	0	0	0,2	0	0	0
NORWALE	SLE freq_4	1	1	0	1,5	0,2	0	0	0	0	0
	SLE freq_5	1	1	0	1,5	0	0,2	0	0	0	0
	SLE freq_6	1	1	0	1,5	0	0	0,2	0	0	0
	Sismica_1	1	1	1,5	0	0	0	0	1	0,3	0
Sismica	Sismica_2	1	1	1,5	0	0	0	0	0,3	1	0
Sistilica	Sismica_3	1	1	0	1,5	0	0	0	1	0,3	0
	Sismica_4	1	1	0	1,5	0	0	0	0,3	1	0
ECCEZ.	Eccezionale CC	1	1	0	0	0	0	0	0	0	1
	Coefficienti di combinazione delle azioni										

2. Verifica della carpenteria del sostegno

Per ogni tipo di combinazione studiata (SLU, SLE, Sismica, Corto circuito, Perdita di carico), si è considerata la combinazione più sfavorevole che fornisce i parametri della sollecitazione alla base della struttura di sostegno impiegati per le verifiche di tipo strutturale del sostegno secondo il metodo semiprobabilistico agli stati limite.

3. Verifica della fondazione

Per ogni combinazioni di carico considerata per la verifica del sostegno si svolgono le verifiche della fondazione, di tipo geotecnico e strutturale, agli stati limite ultimi secondo le NTC.

Per il calcolo delle sollecitazioni si sono adottate le ipotesi di materiali linearmente elastici. Le analisi sono svolte nelle ipotesi di piccoli spostamenti e piccole deformazioni impiegando i criteri della Scienza e della Tecnica delle Costruzioni.

Per ogni combinazioni di carico considerata per la verifica del sostegno si svolgono le verifiche della fondazione, di tipo geotecnico e strutturale, agli stati limite ultimi secondo le NTC 2018.

Per il calcolo delle sollecitazioni della fondazione si sono adottate le ipotesi di materiali linearmente elastici. Le analisi sono svolte nelle ipotesi di piccoli spostamenti e piccole deformazioni impiegando i criteri della Scienza e della Tecnica delle Costruzioni.

Per il calcolo della fondazione si è svolta la modellazione ad elementi finiti mediante l'ausilio del programma di calcolo <u>Mastersap Top</u>, prodotto dalla AMV Software Company¹.

Le fasi del calcolo sono le seguenti:

- Creazione del modello: la realizzazione del modello ad elementi finiti e la definizione dei carichi sono state effettuate con il modulo "Modellazione e analisi" del programma Mastersap. La struttura di fondazione è stata modellata mediante l'impiego degli elementi strutturali "Gusci e piastre", avendo cura di selezionare l'opzione "Platea" per gli elementi costituenti la piastra, posta a profondità 0,70m, che consente di assegnare la costante di sottofondo al terreno, considerato come un letto di molle di rigidezza definita (costante di Winkler per terreni non coesivi). La costante di sottofondo assegnata è pari a 8kg/cm³. I batoli in c.a. cui sono ancorati i sostegni delle apparecchiature sono stati schematizzati mediante elementi strutturali "Travi e pilastri" a cui sono stati assegnati idonei materiale e sezione. Si è scelto di modellare anche tali elementi per maggiore precisione nell'applicazione dei carichi. Le azioni ricavate dal documento di verifica della carpenteria di supporto sono state applicate ai nodi coincidenti con la posizione delle apparecchiature elettromeccaniche.
- Analisi ad elementi finiti: L'analisi statica è eseguita dal modulo "Modellazione e analisi" del programma Mastersap. In tale fase, il programma genera automaticamente i file di input e output.
- Estrazione dei risultati: Per gli elementi "Gusci e piastre", in output il programma consente di visualizzare le pressioni sul suolo, le sollecitazioni e lo stato tensionale degli elementi bidimensionali. Nella fase di post processing, sono stati considerati, in particolare, i valori del momento flettente rispetto ai due assi della fondazione, per il progetto e la verifica strutturale della piastra.

¹ Il programma Mastersap utilizza il solutore Life, incluso nel programma ad elementi finiti, ed implementato nel 2003. Si allega al presente documento l'attestato di affidabilità del programma rilasciato da AMV Software Company al momento dell'acquisto.

7 DEFINIZIONE DEI CARICHI

7.1 Pesi propri

Il peso proprio di sostegni ed apparecchiature è stato tratto dai documenti forniti dal committente e da dati tecnici del produttore dell'apparecchiatura.

7.2 Peso del ghiaccio

Nelle regioni dove si possono verificare formazioni di ghiaccio si deve tenere conto del relativo carico sui conduttori flessibili, sulle sbarre e sui conduttori rigidi (CEI EN 61936-1). Si assume densità del ghiaccio pari a 900kg/m³ e spessore manicotto di ghiaccio di 10 mm.

7.3 Azione del vento

La pressione del vento p si ottiene dall'espressione: $p=q_{ref} \cdot c_e \cdot c_p \cdot A_v$

con: c_e = coeff. di esposizione

 c_p = coeff. di forma pari a: 0,7 se riferito a superfici cilindriche

1 se riferito a superfici piane

Tabella 7.1: Determinazione pressione del vento.

		Comune	Saluzzo (CN)	a _s =365	m s.l.m.	
ZONA	Descrizione			v _{b,0} (m/s)	a ₀ (m)	ka (1/s)
2	Emilia Romagna			25	750	0,45

Rugosità	С	
Cat. Espos.	III	
vr	25,02	m/s
qr	391,20	N/m^2
kr	0,20	
z0	0,10	m
zmin	5	m
ct	1	
Z	5,2	m
ce	1,87	
ср	0,7	
cd	1	
р	391	N/m^2

pressione vento riferita a superficie cilindrica

7.4 Carico durante il montaggio

Il carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto.

7.5 Azione sismica

Nel nuovo D.M. 17 gennaio 2018 "Nuove norme tecniche per le costruzioni" i parametri per il calcolo dell'azione sismica sulle strutture non vengono dati in base alla zona, ma in base alle coordinate geografiche del sito. In base alla posizione dell'area nel reticolo geografico di riferimento, le norme restituiscono i valori di ag (accelerazione orizzontale massima del terreno), F0 (valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale) e T*c (periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Tali parametri dipendono anche dalla vita di riferimento VR della struttura e dalla probabilità di superamento nella vita di riferimento PVR associate a ciascuno degli stati limite considerati.

Nel caso in esame, i valori dei parametri sono i seguenti:

Classe d'uso	IV
Vita nominale Vn	100 anni
Coefficiente d'uso Cu	2
Periodo di riferimento per l'azione sismica	200 anni

Vita nominale, classi d'uso e periodo di riferimento delle opere strutturali permanenti in progetto

	TR	ag/g	FO	TC*	CC	Ss	Pga (ag*S) (m/s^2)
SLO	120	0.0470	2.4960	0.31	1.55	1.50	0.692
SLD	201	0.0560	2.5730	0.33	1.51	1.50	0.824
SLV	1898	0.1211	2.6480	0.41	1.41	1.50	1.782
SLE	1898	0.1211	2.6480	0.41	1.41	1.50	1.782
SLC	2475	0.1323	2.6430	0.42	1.39	1.49	1.934

Parametri di pericolosità sismica delle opere strutturali permanenti in progetto

II D.M. 17 gennaio 2018 prevede inoltre che, ai fini del calcolo dell'azione sismica di progetto, i terreni in corrispondenza del piano di imposta delle fondazioni vengano classificati in una delle 7 categorie - A, B, C, D, E, S1, S2 - di sottosuolo di riferimento definite nelle Tabelle 3.2.II e 3.2.III del Paragrafo 3.2.2.

L'indagine sismica ha consentito di determinare una velocità media delle onde di taglio "s" nei primi 30 m di sottosuolo di 284 m/s, cui corrisponde una categoria di suolo di tipo C:

"Depositi di terreni a grana grossa mediamente addens ati o terreni a grana fina mediamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di VS,30 compresi tra 360 m/s e 800 m/s".

Per ciò che concerne le condizioni topografiche dei luoghi interessati dagli interventi, che presentano una configurazione superficiale semplice, è possibile adottare la suddivisione, riportata in Tabella 3.2.IV dello stesso decreto, che prevede 4 distinte categorie topografiche - T1, T2, T3, T4; nel caso in esame

il terreno rientra nella classe T1: "Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i≤15°".

7.6 Condizione di carico da corto circuito

La condizione di corto circuito è considerata eccezionale. I valori di corto circuito per l'apparecchiatura sono stati determinati secondo normativa vigente.

Il corto circuito non viene considerato contestualmente al sisma, anche se potrebbe essere causato da quest'ultimo. Trattasi, in questa interpretazione, di due eventi eccezionali la cui probabilità combinata di accadimento può essere considerata scarsa.

8 CARICHI AGENTI E DETERMINAZIONE DEI PARAMETRI DELLA SOLLECITAZIONE

Di seguito sono riportati i carichi sopra descritti che sono stati applicati al modello di calcolo ad elementi finiti della struttura di sostegno dell'apparecchiatura.

Nel modello di calcolo, i carichi sono applicati come forze concentrate nei punti coincidenti con il baricentro degli elementi. Per maggiori dettagli si rimanda alle seguenti tabelle.

8.1 Azione del vento

Si riporta la determinazione della forza vento applicata al modello di calcolo, spirante in direzione x e y.

La forza vento sull'apparecchiatura viene calcolata come forza applicata al baricentro dell'apparecchiatura e riportata alla sommità del sostegno insieme al suo momento di trasporto. La forza vento sulla struttura di sostegno viene considerata anch'essa come applicata al baricentro dell'elemento.

Asse Sbarra **X**

INTERRUTTORE TRIPOLARE, del tipo ABB (SF6 CIRCUIT BREAKER, SF6 BRYTARE).

Carichi derivanti da azione del vento									
pressione vento su sup. cilindr	riche	p sup.	cil.	55,60	daN/m^2				
pressione vento su sup. piane		p sup.	piane	79,43	daN/m^2				
Forza vento xx									
Superficie esposta al vento	арр.	уу		2,45	m^2/m	Superficie yy_v	ento ir	dir XX	apparecch.
	traverso	уу		1,0178	m^2/m	Superficie yy_v	ento ir	dir XX	singolo traverso
	colonna	уу		0,59	m^2/m	Superficie yy_v	ento ir	dir XX	singola colonna
Fvx, app			/3	45,45	daN	zG,app=	4,13	m	
Fvx, trav			1	80,85	daN	zG,trav=	2,78	m	_
Fvx, col			1	46,75	daN	zG,col=	1,34	m	
My,trasporto			1	66,33	daN m				
Forza vento yy									
Superficie esposta al vento	арр.	XX		2,45	m^2/m	Superficie xx_v	ento ir	dir YY	apparecch.
	traverso	xx		0	m^2/m	Superficie xx_v	ento ir	dir YY	singolo traverso
	colonna	XX		0,59	m^2/m	Superficie xx_v	ento ir	dir YY	singola colonna
	conduttore	XX		0,04	m^2/m				_
Fvy, app			/3	45,45	daN	zG,app=	4,13	m	
Fvy, trav			1	0,00	daN	zG,trav=	2,78	m	
Fvy, col			1	46,75	daN	zG,col=	1,34	m	
Fvy, cond rigido DX			1	8,34	daN				
Fvy, cond rigido SX			11	3,89	daN				
Mx,trasporto	vento su app.		1	78,50	1				
Mx,trasporto	vento su cond	. DX	1	49,73					
Mx,trasporto	vento su cond	. SX	1	17,90	daN m				
Peso conduttore rigido				-4,04	daN	p lineae sb. allu [daNm]			0,735
Peso manicotto di ghiaccio 10	mm			-7,77	daN	p lineare manic _ [daN/m]	σιιο 1	UITIITI	1,412

Area esposta al vento conduttore rigido	0,04	m^2/m	densità ghiaccio 900 kg/m3
Lunghezza conduttore binato DX	7,5	m	
Lunghezza conduttore binato SX	3,5	m	
Area esposta al vento conduttore rigido con ghiaccio	0,06	m^2/m	

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, di cui si riporta un estratto, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste. Si precisa che il carico di montaggio è stato applicato ai nodi in cui l'apparecchiatura viene ancorata alla struttura di sostegno. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio
	SLU_1	1,3	1,5	1,5	0	1,5	0,9	0,75
	SLU_2	1,3	1,5	0	1,5	1,5	0,9	0,75
NORMALE	SLU_3	1,3	1,5	1,5	0	0,9	1,5	0,75
NORIVIALE	SLU_4	1,3	1,5	0	1,5	0,9	1,5	0,75
	SLU_5	1,3	1,5	1,5	0	0,9	0,9	1,5
	SLU_6	1,3	1,5	0	1,5	0,9	0,9	1,5
	SLE freq_1	1	1	1,5	0	0,2	0	0
	SLE freq_2	1	1	1,5	1,5	0	0,2	0
NORMALE	SLE freq_3	1	1	1,5	1,5	0	0	0,2
INURIVIALE	SLE freq_4	1	1	0	1,5	0,2	0	0
	SLE freq_5	1	1	0	1,5	0	0,2	0
	SLE freq_6	1	1	0	1,5	0	0	0,2

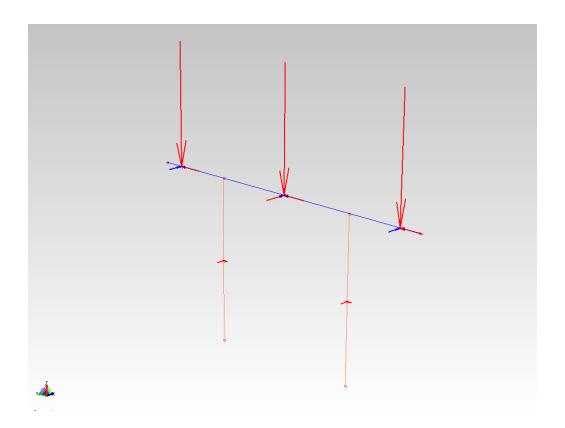
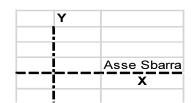



Fig. 8.1. Vista del modello ad elemeneti finiti con applicazione dei carichi in SLU 3.

8.2 Corto circuito

Il carico da corto circuito è stato applicato nella direzione yy in corrispondenza dei nodi cui è vincolata l'apparecchiatura. La forza vale 300 daN. Sullo stesso punto è stato applicato un momento di trasporto calcolato come il valore della forza da corto circuito per l'altezza dell'apparecchiatura, in quanto il carico

da corto circuito si assume applicato in sommità dell'apparecchiatura. Il valore applicato è pari a M=300 daN x 2,919 m=875,70 daN m.

INTERRUTTORE TRIPOLARE

Corto circuito				
valore del corto circuito	YY	300,00	daN	applicato all'apparecchiatura
My,trasporto		875,70	daN m	applicato al traverso su cui grava l'apparecchiatura

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste, di cui si riporta un estratto. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio	Corto circuito
ECCEZ.	Eccezionale CC	1	1	0	0	0	0	0	1

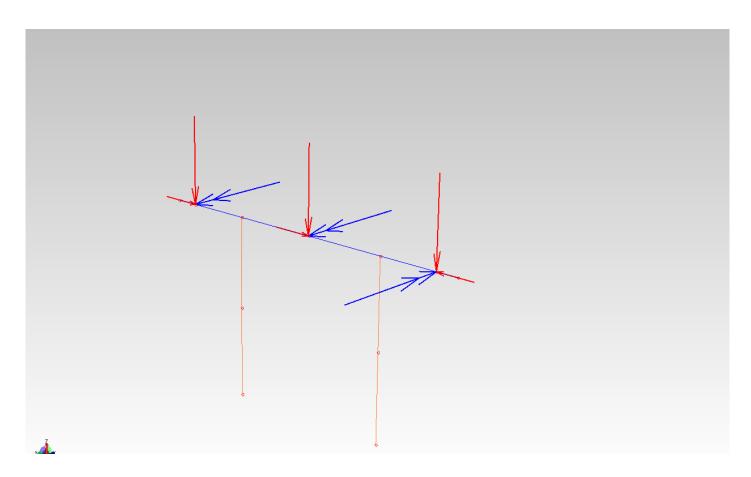


Fig. 8.2. Vista del modello ad elementi finiti con applicazione dei carichi in Corto circuito.

8.3 Azione sismica

L'azione sismica si ripartisce sul sistema sostegno+apparecchiatura secondo la relazione:

$$Fi = Fh \cdot zi \cdot Wi / (\Sigma j \cdot zj \cdot Wj)$$

I carichi così ottenuti e applicati al modello sono riportati di seguito.

Con riferimento alla tabella 7.3, e alle caratteristiche del sistema si ha:

INTERRUTTORE TRIPOLARE, del tipo ABB (SF6 CIRCUIT BREAKER, SF6 BRYTARE).

Carichi derivanti da azione sis			Y			
Forza orizzontale		Fh	765,00	daN		
Apparecchiatura	Wapp	1920,00	daN		Asse Sbarra X	
 		z app	4,13	B m		^
Sostegno		Wtrav+col	630,00	daN	<u> </u>	
		Z trav+col	1,34	m		
		Σj zj Wj	8780,87	daN m		
Ripartizione azione sismica su	elementi princip	ali				
	Apparecchiatura	l	691,59	daN		
	sostegno		73,4	daN		
M trasporto	691,59*2,919/2=	•	1009,37	daN m		

Anche in questo caso ai nodi del traverso (n. 6) su cui grava l'apparecchiatura, è stato applicato un momento M= 691,59*2,919/2=1009,37 daN m, calcolato come la forza sismica sull'apparecchiatura applicata al baricentro della stessa. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Е	E	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio	Sisma X	Sisma Y	Corto circuito
	Sismica_1	1	1	1,5	0	0	0	0	1	0,3	0
Sismica	Sismica_2	1	1	1,5	0	0	0	0	0,3	1	0
Sismica	Sismica_3	1	1	0	1,5	0	0	0	1	0,3	0
	Sismica_4	1	1	0	1,5	0	0	0	0,3	1	0

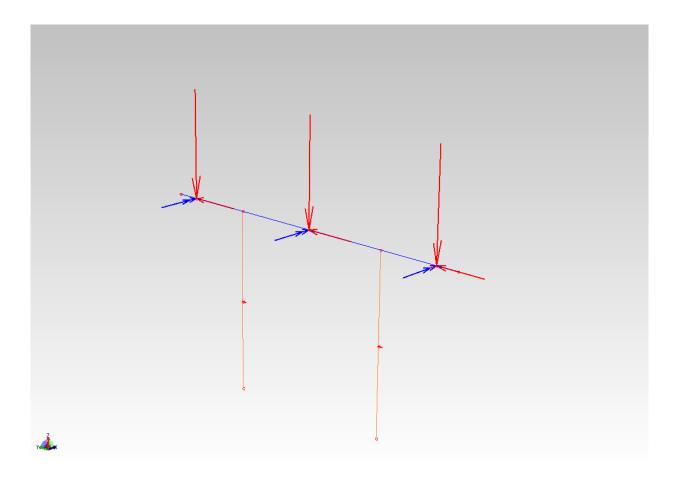


Fig. 8.3. Vista del modello ad elementi finiti con applicazione dei carichi in Sismica 4.

8.4 Combinazione di carico agli stati limite ultimi SLU

Parametri della sollecitazione alla base della singola colonna- SLU										
	SLU_1	SLU_2	SLU_3	SLU_4	SLU_5	SLU_6				
Azione assiale	19000	19480	19420	19050	19080	19560				
	10000						N			
Taglio in X	4580	2330	3650	1400	3650	1400				
Taglio III X							N			
Taglia in V	3840	6090	4640	6890	3850	6100				
Taglio in Y							N			
Mamanta flattanta rianatta assa V	3710	7470	4710	8460	3720	7480				
Momento flettente rispetto asse X							N m			
Mamonta flattanta rianatta assa y	12810	6790	10090	4070	10090	4070				
Momento flettente rispetto asse y							N m			

8.5 Combinazione di carico sismica

Parametri della sollecitazione alla base della singola colonna- SISMICA

	Sismica_1	Sismica_2	Sismica_3	Sismica_4	
Azione assiale	14750	15190	16150	15710	N
Taglio in X	6080	3400	3830	1150	N
Taglio in Y	3250	5930	5500	8180	N
Momento flettente rispetto asse X	3420	7270	7180	11030	N m
Momento flettente rispetto asse y	20810	10460	14790	4440	N m

8.6 Combinazione di carico da corto circuito

Parametri della sollecitazione alla base della singola colonna- CORTO CIRCUITO							
	CC1						
Azione assiale	14900	N					
Taglio in X	0	N					
Taglio in Y	6920	N					
Momento flettente rispetto asse X	7490	N m					
Momento flettente rispetto asse y	0	N m					

9 VERIFICA DEL SOSTEGNO

Il sostegno è stato oggetto di verifica di resistenza delle membrature e verifica degli spostamenti laterali e verticali, quest'ultima svolta sulla combinazione di carico per gli stati limite d'esercizio.

Le verifiche di resistenza delle membrature svolte riguardano i parametri della sollecitazione derivanti dalle più gravose tra le combinazioni di carico Sismica, SLU, Corto circuito.

Si è svolta inoltre la verifica dei tirafondi.

Tabella 9.1: Caratteristiche del sostegno di supporto apparecchiatura.

Caratteristich	ne sostegno	,
Ø	193,70	mm
sp	10,0	mm
J _x	2442,0	cm⁴
W _{el}	208,0	cm ³
W _{pl}	338000	mm ³
Α	57,7	cm ²
Classe	2	
A _v	2141	mm ²
V_{Rd}	417913	N
$M_{pl,Rd}$	77504	N m

9.1 Verifica di resistenza della carpenteria

Per le verifiche di resistenza si considerano i valori dei parametri delle sollecitazioni maggiori ottenuti dalle combinazioni di carico più sfavorevoli (Tab. 9.2). Sono state svolte:

- verifica della sezione del sostegno
- verifica della giunzione saldata tra tubo e piastra di base

Tabella 9.2: Parametri della sollecitazione alla base del sostegno nelle combinazioni di carico più sfavorevoli.

	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4	
Azione assiale	19420	19740	14340	15650	17070	17050	N
Taglio in X	4160	1150	0	6410	3500	1250	N
Taglio in Y	1310	4430	1430	1250	4160	6410	N
Momento flettente rispetto asse X	3110	11120	3740	3140	10450	16390	N m
Momento flettente rispetto asse y	12230	3760	0	19920	10150	4190	N m
VE,d, tot (N)	4361	4577	1430	6531	5437	6531	N

ME,d, tot (N m) 12619 11738 3740 20166 145	668 16917	N m
--	-------------	-----

Verifica della sezione del sostegno

Per la verifica taglio deve essere soddisfatta la seguente condizione: V_{ed} / $V_{c,Rd} \leq 1$

dove la resistenza di calcolo a taglio $V_{c,Rd}$ vale: $V_{c,Rd} = A_V \cdot f_{yk}/(1,05 \cdot \sqrt{3})$

Per la sezione circolare cava appartenente alla classe 2, poiché il taglio di calcolo V_{Ed} risulta sempre inferiore al 50% della resistenza di calcolo a taglio $V_{c,Rd}$, la resistenza a flessione della sezione può essere calcolata senza applicare alcun coefficiente di riduzione.

La verifica a flessione deve soddisfare la condizione: $M_{Ed}/M_{pl,Rd} \leq 1$

Av	2141	mm2					
Vrd	417913	N					
							_
	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4	
V _{E,d, tot} /V _{Rd}	0,010	0,011	0,003	0,016	0,013	0,016	NTC 2018
M _{Ed,tot} /M _{pIRd}	0,163	0,151	0,048	0,260	0,188	0,218	
VERIFICA <1	Verificato	Verificato	Verificato	Verificato	Verificato	Verificato	
VERIFICA <1	Verificato	Verificato	Verificato	Verificato	Verificato	Verificato	

Verifica della giunzione saldata tra tubo e piastra

Si verifica la giunzione saldata tra tubo e piastra, realizzata mediante una saldatura a cordone d'angolo 5x5mm continua su tutta la circonferenza esterna del tubo.

Caratteristiche cordone d'angolo							
b	5	mm					
h	5	mm					
u	3,54	mm					
area	2433,6	mm ²					
J	15300000	mm ⁴					
Wel	135519	mm ³					
ftk	510,00	N/mm ²					
Y M2	1,25						

SOLLECITAZIONI	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4	
Med	12619231	11738484	3740000	20165961	14567944	16917098	N mm
NEd	19420	19740	14340	15650	17070	17050	N
VEd	4361	4577	1430	6531	5437	6531	N
	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4	
b	0,9	0,9	0,9	0,9	0,9	0,9	
t//^2+Tperp^2	1,79	1,88	0,59	2,68	2,23	2,68	N/mm²

sperp	85,14	78,51	21,71	142,37	100,48	117,83	N/mm ²
Valore di controllo	85,17	78,54	21,75	142,40	100,52	117,86	
ftk/(bgM2)	453,33	453,33	453,33	453,33	453,33	453,33	N/mm ²
	Verificato	Verificato	Verificato	Verificato	Verificato	Verificato	

9.2 Verifica degli spostamenti laterali

Si è svolto il controllo dello spostamento laterale nella sezione superiore d'estremità della colonna. Il modello ad elementi finiti ha fornito il massimo valore dello spostamento orizzontale ai nodi interessati per la combinazione frequente. Tale valor è stato diviso per la lunghezza della colonna ed è stato confrontato con il valore di controllo 1/150 ("edifici monopiano senza carroponte").

		S					
nodo 4	SLE freq 1	0,004	m				
	SLE freq 2	0,0035	m				
	SLE freq 3	0,0035	m				
	SLE freq 4	0,0035	m				
	SLE freq 5	0,0039	m				
	SLE freq 6	0,0035	m				
	MASSIMO SPOSTAMENTO SOMMITA' COLONNA						
S=	0,004	m					
L=	2,65	m					
Verifica spostamenti laterali							
δ	0,0015	Spostamento relativo					
limite	0,0067	Valore di controllo 1/150					
	Verificato						

La verifica SLE per lo spostamento laterale risulta soddisfatta.

9.3 Verifica degli spostamenti verticali

Si è svolto il controllo dello spostamento verticale per gli elementi orizzontali (traversi) del sostegno, posizionati al di sopra degli elementi tubolari. Il modello ad elementi finiti ha fornito il massimo valore dello spostamento per la combinazione frequente ai nodi interessati. Tale valore è stato diviso per la distanza dei nodi identificati come appoggi ed è stato confrontato con il valore di controllo 1/200 ("coperture in generale"). La verifica SLE per lo spostamento verticale risulta soddisfatta.

			S			
HEB 100	nodo 10	SLE freq 1	0,005	m		
		SLE freq 2	0,004	m		
		SLE freq 3	0,004	m		
		SLE freq 4	0,003	m		
		SLE freq 5	0,003	m		
		SLE freq 6	0,003	m		
MASSIMO SPOSTAMENTO VERTICALE s= 0,005 m L= 3,4 m						
Verifica spostamenti verticali						
	δ	0,0015	Spostamento r	elativo		
	limite	0,0050	Valore di contr	ollo 1/200		
		Verificato				

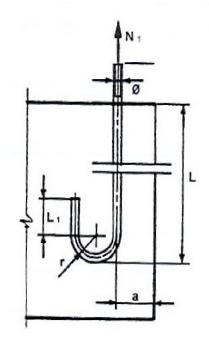
			S	
2 UPN100	nodo 6	SLE freq 1	0,004	m
		SLE freq 2	0,004	m
		SLE freq 3	0,004	m
		SLE freq 4	0,002	m
		SLE freq 5	0,002	
		SLE freq 6	0,002	m
1				

MASSIMO SPOSTAMENTO VERTICALE

s= 0,004 m L= 0,92 m

Verifica spostamenti verticali

δ	0,0043	Spostamento relativo
limite	0,0050	Valore di controllo 1/200
	Verificato	


9.4 Verifica dei tirafondi

Si effettuano due tipi di verifica:

- Verifica a rottura sulla parte filetta del tirafondo, soggetta a forze assiali e di taglio;
- Verifica a sfilamento della parte annegata nel calcestruzzo della fondazione.

Dati tirafondo

n°	4	
dist x	400	mm
dist y	400	mm
Ø	20	mm
Ltot	1096	mm
L	620	mm
L1	70	mm
r	100	mm
а	100	mm
As	314	mm ²
A _{res}	220	mm2

ACCIAIO	B450C			
f _{yk}	450,00	N/mm ²		
f tk	540,00	N/mm ²		
Y M2	1,25			
f yd	360,00	N/mm ²		
f _{td}	432,00	N/mm ²		

Reazioni su	ı singolo ti	rafondo						
	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4		
Ned/4	-4855	-4935	-3585	-3913	-4268	-4263	N	Reazione per azione assiale
VEd TOT/4	1090	1144	358	1633	1359	1633	N	Reazione per taglio totale
Med-xx	3888	13900	4675	3925	13063	20488	N	Reazione per momento flettente XX
Med-yy	15288	4700	0	24900	12688	5238	N	Reazione per momento flettente YY
Ned TOT	14320	13665	1090	24913	21483	21463	N	Reazione verticale totale su singolo tirafondo
Verifica a rott	•	•				_	1	
	SLU_1	SLU_4	CC1	Sismica_1	Sismica_2	Sismica_4		
S	65,09	62,11	4,95	113,24	97,65	97,56	N/mm2	Tensione di calcolo data delle reazioni assiali
t	4,96	5,20	1,63	7,42	6,18	7,42	N/mm2	Tensione di calcolo data dalle reazioni a taglio
s von Mises	65,65	62,76	5,70	113,97	98,23	98,40	N/mm2	Tensione di Von Mises
fcfr	388,80	388,8	388,8	388,8	388,8	388,8	N/mm2	Resistenza a rottura
	Verificato	Verificato	Verificato	Verificato	Verificato	Verificato		
Verifica a sfilamento								
Ned	1432	1367	109	2491	2148	2146	daN	Reazione per azione assiale
Nmax	12411	12411	12411	12411	12411	12411	daN	resistenza max tirafondo
	Verificato	Verificato	Verificato	Verificato	Verificato	Verificato		

10 CONCLUSIONI

Sugli esiti delle analisi effettuate, per le condizioni di carico statico e per la condizione di carico sismica effettuata secondo le NTC 2008, risulta che per tutte le combinazioni di carico applicate:

- le verifiche di tipo strutturale sulla struttura di sostegno risultano verificate;
- la verifica dei tirafondi risulta verificata.

Il progettista